This study evaluated the effects of purified paper wasp Ropalidia marginata venoms on various biomolecules in the blood serum of albino mice. Changes in the concentration of some important macromolecules, i.e., protei...This study evaluated the effects of purified paper wasp Ropalidia marginata venoms on various biomolecules in the blood serum of albino mice. Changes in the concentration of some important macromolecules, i.e., proteins, free amino acids, uric acid, cholesterol, pyruvic acid, total lipids and glucose were noted down. These alterations were measured after intraperitoneal injection of 40% and 80% 24-hour LD50 purified Ropalidia marginata venom toxin. Serum total protein levels were found to decrease to 78% after 6 hrs, while serum free amino acid levels were significantly increased to 117% 6 hrs after venom injection compared to control. It was also found that serum uric acid levels increased to 138% after 8 hrs of venom injection compared to control. The increase in serum cholesterol i.e. (101% and 106%) and pyruvic acid increased significantly to a maximum value of 106% after 6 hrs of treatment at 40% LD<sub>50</sub>. Glycogen levels in the gastrocnemius muscle were found to decrease significantly (p-0.05) to 43% and 92% at LD<sub>50</sub> after injection of purified Ropalidia marginata venom after 8 h and 80% at LD<sub>50</sub> compared to control. Moreover, up to 71% and 81% were obtained at 10 hrs of treatment with the same dose. In the present study, the purified toxins significantly changed the levels of biomolecules in blood serum, indicating their wider effects on cellular physiology due to toxic effects and stress on the animal. These toxins can be good antigens and stimulate immune responses in experimental mice.展开更多
This study aimed to investigate aquaporin 4 expression and the ultrastructure of the blood-brain barrier at 2-72 hours following cerebral contusion injury, and correlate these changes to the formation of brain edema. ...This study aimed to investigate aquaporin 4 expression and the ultrastructure of the blood-brain barrier at 2-72 hours following cerebral contusion injury, and correlate these changes to the formation of brain edema. Results revealed that at 2 hours after cerebral contusion and laceration injury, aquaporin 4 expression significantly increased, brain water content and blood-brain barrier permeability increased, and the number of pinocytotic vesicles in cerebral microvascular endothelia cells increased. In addition, the mitochondrial accumulation was observed. As contusion and laceration injury became aggravated, aquaporin 4 expression continued to increase, brain water content and blood-brain barrier permeability gradually increased, brain capillary endothelial cells and astrocytes swelled, and capillary basement membrane injury gradually increased. The above changes were most apparent at 12 hours after injury, after which they gradually attenuated. Aquaporin 4 expression positively correlated with brain water content and the blood-brain barrier index. Our experimental findings indicate that increasing aquaporin 4 expression and blood-brain barrier permeability after cerebral contusion and laceration injury in humans is involved in the formation of brain edema.展开更多
A rat model of middle cerebral artery permanent occlusion was established using the modified Longa method. Successfully established model animals were treated by blood-letting puncture at twelve Jing-Well points of th...A rat model of middle cerebral artery permanent occlusion was established using the modified Longa method. Successfully established model animals were treated by blood-letting puncture at twelve Jing-Well points of the hand, and/or by injecting mannitol into the caudal vein twice daily. Brain tissue was collected at 24, 48 and 72 hours after modeling, and blood was collected through the retinal vein before Evans blue was injected, approximately 1 hour prior to harvesting of brain tissue. Results showed that Evans blue leakage into brain tissue and serum nitric oxide synthase activity were significantly increased in model rats. Treatment with blood-letting punctures at twelve Jing-Well points of the hand and/or injection of mannitol into the caudal vein reduced the amount of Evans blue leakage into the brain tissue and serum nitric oxide synthase activity to varying degrees. There was no significant difference between single treatment and combined treatment. Experimental findings indicate that blood-letting punctures at twelve Jing-Well points of the hand can decrease blood-brain barrier permeability and serum nitric oxide synthase activity in rats following middle cerebral artery occlusion, and its effect is similar to that of mannitol injection alone and Jing-Well points plus mannitol injection.展开更多
文摘This study evaluated the effects of purified paper wasp Ropalidia marginata venoms on various biomolecules in the blood serum of albino mice. Changes in the concentration of some important macromolecules, i.e., proteins, free amino acids, uric acid, cholesterol, pyruvic acid, total lipids and glucose were noted down. These alterations were measured after intraperitoneal injection of 40% and 80% 24-hour LD50 purified Ropalidia marginata venom toxin. Serum total protein levels were found to decrease to 78% after 6 hrs, while serum free amino acid levels were significantly increased to 117% 6 hrs after venom injection compared to control. It was also found that serum uric acid levels increased to 138% after 8 hrs of venom injection compared to control. The increase in serum cholesterol i.e. (101% and 106%) and pyruvic acid increased significantly to a maximum value of 106% after 6 hrs of treatment at 40% LD<sub>50</sub>. Glycogen levels in the gastrocnemius muscle were found to decrease significantly (p-0.05) to 43% and 92% at LD<sub>50</sub> after injection of purified Ropalidia marginata venom after 8 h and 80% at LD<sub>50</sub> compared to control. Moreover, up to 71% and 81% were obtained at 10 hrs of treatment with the same dose. In the present study, the purified toxins significantly changed the levels of biomolecules in blood serum, indicating their wider effects on cellular physiology due to toxic effects and stress on the animal. These toxins can be good antigens and stimulate immune responses in experimental mice.
文摘This study aimed to investigate aquaporin 4 expression and the ultrastructure of the blood-brain barrier at 2-72 hours following cerebral contusion injury, and correlate these changes to the formation of brain edema. Results revealed that at 2 hours after cerebral contusion and laceration injury, aquaporin 4 expression significantly increased, brain water content and blood-brain barrier permeability increased, and the number of pinocytotic vesicles in cerebral microvascular endothelia cells increased. In addition, the mitochondrial accumulation was observed. As contusion and laceration injury became aggravated, aquaporin 4 expression continued to increase, brain water content and blood-brain barrier permeability gradually increased, brain capillary endothelial cells and astrocytes swelled, and capillary basement membrane injury gradually increased. The above changes were most apparent at 12 hours after injury, after which they gradually attenuated. Aquaporin 4 expression positively correlated with brain water content and the blood-brain barrier index. Our experimental findings indicate that increasing aquaporin 4 expression and blood-brain barrier permeability after cerebral contusion and laceration injury in humans is involved in the formation of brain edema.
基金sponsored by the Open Research Fund of Zhejiang First-foremost Key Subject-Acupuncture & Moxibustion,No. ZTK2010A07
文摘A rat model of middle cerebral artery permanent occlusion was established using the modified Longa method. Successfully established model animals were treated by blood-letting puncture at twelve Jing-Well points of the hand, and/or by injecting mannitol into the caudal vein twice daily. Brain tissue was collected at 24, 48 and 72 hours after modeling, and blood was collected through the retinal vein before Evans blue was injected, approximately 1 hour prior to harvesting of brain tissue. Results showed that Evans blue leakage into brain tissue and serum nitric oxide synthase activity were significantly increased in model rats. Treatment with blood-letting punctures at twelve Jing-Well points of the hand and/or injection of mannitol into the caudal vein reduced the amount of Evans blue leakage into the brain tissue and serum nitric oxide synthase activity to varying degrees. There was no significant difference between single treatment and combined treatment. Experimental findings indicate that blood-letting punctures at twelve Jing-Well points of the hand can decrease blood-brain barrier permeability and serum nitric oxide synthase activity in rats following middle cerebral artery occlusion, and its effect is similar to that of mannitol injection alone and Jing-Well points plus mannitol injection.