期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Purification Influence of Synthesis Gas Derived from Methanol Cracking on the Performance of Cobalt Catalyst in Fischer-Tropsch Synthesis
1
作者 Wei Zhou Shengying Liu +3 位作者 Yulan Wang Kegong Fang Jiangang Chen Yuhan Sun 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2005年第4期193-198,共6页
Synthesis gas derived from methanol cracking (SGMC) was applied as simulating feedstock of Fischer-Tropsch synthesis (FTS) in laboratory. With MS and GC detector, a trifle of sulfur compounds, a small amount of ox... Synthesis gas derived from methanol cracking (SGMC) was applied as simulating feedstock of Fischer-Tropsch synthesis (FTS) in laboratory. With MS and GC detector, a trifle of sulfur compounds, a small amount of oxygenates including H2O, CH3OH, DME and CO2 as well as a few of low carbon alkanes were found in the SGMC. After purification, the sulfur compounds, H2O, CH3OH and DME could be eliminated efficiently from the SGMC while CO2 and the low carbon alkanes were partly removed. When the unpurified SGMC, the desufurized SGMC and the totally purified SGMC were sequentially applied in cobalt-based FTS, the catalytic performance of Co/ZrO2/SiO2 catalyst was gradually improved corresponding to the degree of purification. The untreated SGMC led to the serious deactivation of the cobalt catalyst, the partially treated SGMC slowed down the deactivation rate and the totally purified SGMC resulted in little deactivation of the catalyst, which was similar to what the pure synthesis gas (the mixture of pure H2 and CO) did. The results indicated that the SGMC should be purified and the purification course used in this paper was effective for the SGMC. Furthermore, the totally purified SGMC could substitute for the pure synthesis gas in cobalt FTS. 展开更多
关键词 Fischer-Tropsch synthesis synthesis gas methanol cracking PURIFICATION
下载PDF
A review of C_1 chemistry synthesis using yttrium-stabilized zirconia catalyst 被引量:3
2
作者 Antonius Indarto Jae-Wook Choi +1 位作者 Hwaung Lee Hyung Keun Song 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第1期1-6,共6页
C1 chemistry based on synthesis gas, methane, and carbon dioxide offers many routes to industrial chemicals. The reactions related to the synthesis of gas can be classified into direct and indirect approach for making... C1 chemistry based on synthesis gas, methane, and carbon dioxide offers many routes to industrial chemicals. The reactions related to the synthesis of gas can be classified into direct and indirect approach for making such products, such as acetic acid, dimethyl ether, and alcohol. Catalytic syngas processing is currently done at high temperatures and pressures, conditions that could be unfavorable for the life of the catalyst. Another issue of C1 chemistry is related to the methane-initiated process. It has been known that direct methane conversions are still suffering from low yields and selectivity of products resulting in unprofitable ways to produce products, such as higher hydrocarbons, methanol, and so on. However, many experts and researchers are still trying to find the best method to overcome these barriers, for example, by finding the best catalyst to reduce the high-energy barrier of the reactions and conduct only selective catalyst-surface reactions. The appli- cation of Yttria-Stabilized Zirconia (YSZ) and its combination with other metals for catalyzing purposes are increasing. The existence of an interesting site that acts as oxygen store could be the main reason for it. Moreover, formation of intermediate species on the surface of YSZ also contributes significantly in increasing the production of some specific products. Understanding the phenomena happening inside could be necessary. In this article, the use of YSZ for some C1 chemistry reactions was discussed and reviewed. 展开更多
关键词 C1 chemistry METHANE synthesis gas methanol yttria-stabilized zirconia CATALYST oxygen storage rare earths
下载PDF
Process conditions for preparing methanol from cornstalk gas 被引量:1
3
作者 ZHU Ling-feng DU Lei LI Xin-bao LI Guo-ting ZHANG Jie 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第5期628-632,共5页
The low-heat-value cornstalk gas produced in the down-flow fixed bed gasifier was tentatively used for methanol synthesis. The cornstalk gas was purified and the technical procedures such as deoxygenation, desulfuriza... The low-heat-value cornstalk gas produced in the down-flow fixed bed gasifier was tentatively used for methanol synthesis. The cornstalk gas was purified and the technical procedures such as deoxygenation, desulfurization, catalytic cracking of tar, purification and hydrogenation were studied. The catalytic experiments of methanol synthesis with cornstalk syngas were carried out in a tubular-flow integral and isothermal reactor. The effect of reaction temperature, pressure, catalysttypes, catalyst particle size, syngas flow at entering end and composition of syngas was investigated. The optimum process conditions and yield of methanol from cornstalk syngas were obtained. The experimental results indicated that the proper catalyst of the synthetic reaction was C301 and the optimum catalyst size (φ) was 0.833 mm×0.351 mm. The optimum operating temperature and pressure were found to be 235℃ and 5 Mpa, respectively. The suitable syngas flow 0.9-1.10 mol/h at entering end was selected and the best composition of syngas were CO 10.49%, CO2 8.8%, N2 37.32%, CnHm 0.95% and H2 40.49%. The best methanol yield is 0.418 g/g cornstalk. The study provided the technical support for the industrial test of methanol production from biomass (cornstalk)gas. 展开更多
关键词 cornstalk syngas fuel gas PURIFICATION CATALYST methanol synthesis
下载PDF
Process Optimization of Coke Oven Gas to Methanol Based on the Downgrade of By-Product Steam
4
作者 Qingjuan Zheng Shiyu Li 《Transactions of Tianjin University》 EI CAS 2019年第3期214-225,共12页
In the coke oven gas to methanol(CTM) process, boiling water(above 200 ℃) is generally used as the coolant in the methanol synthesis reactor, and thus, medium-pressure steam is generated as a by-product. In this pape... In the coke oven gas to methanol(CTM) process, boiling water(above 200 ℃) is generally used as the coolant in the methanol synthesis reactor, and thus, medium-pressure steam is generated as a by-product. In this paper, the influence of the coolant temperature on the CTM process is investigated from two aspects, which are the performance analyses of the reactor and the overall process and the energy integration of by-product steam. The results reveal that the coolant temperature plays a key role in the CTM process optimization. When the coolant temperature is reduced to 187 ℃, though low-pressure steam is generated, the techno-economic performance of the whole process is greatly improved: the energy/exergy efficiency is increased by 4-9%, energy cost is saved by 37.1%, income is increased by 5.4 M$/year, and the C02 emission is reduced by 21.3%. 展开更多
关键词 COKE OVEN gas methanol synthesis Process optimization Energy SAVING
下载PDF
Progress in studies of natural gas conversion in China 被引量:3
5
作者 Yu Changchun Shen Shikong 《Petroleum Science》 SCIE CAS CSCD 2008年第1期67-72,共6页
Progress in natural gas conversion in China is presented in this paper, including processes of natural gas to synthesis gas (syngas), syngas to liquid hydrocarbons, oxygenates synthesis, methanol to olefins (MTO),... Progress in natural gas conversion in China is presented in this paper, including processes of natural gas to synthesis gas (syngas), syngas to liquid hydrocarbons, oxygenates synthesis, methanol to olefins (MTO), methane to aromatics and oxidative coupling of methane (OCM). 展开更多
关键词 METHANE natural gas conversion GTL synthesis gas hydrocarbons ALCOHOLS olefins methanol dimethyl ether
下载PDF
合成气合成甲醇、二甲醚的动力学研究
6
作者 韩刚 周钰明 《东南大学学报(自然科学版)》 EI CAS CSCD 1995年第A04期163-167,共5页
合成气合成甲醇、二甲醚的动力学研究韩刚周钰明(南京大学化学系.南京210093))(东南大学化学化工系,南京210018)在研究催化的同时,进行催化反应动力学的考察将为催化剂的工业化提供必要的实验参数,对合成气常压或... 合成气合成甲醇、二甲醚的动力学研究韩刚周钰明(南京大学化学系.南京210093))(东南大学化学化工系,南京210018)在研究催化的同时,进行催化反应动力学的考察将为催化剂的工业化提供必要的实验参数,对合成气常压或加氢下合成甲醇的动力学研究已有一些... 展开更多
关键词 synthesis gas METHYL ETHER methanol KINETICS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部