This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solu...This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solution exists globally and blows up in a finite time respectively, and then give the necessary and sufficient conditions that two components u and ν blow up simultaneously. Finally, the uniform blow-up profiles in the interior are presented.展开更多
This paper deals with positive solutions to a class of nonlocal and degenerate quasilinear parabolic system with null Dirichlet boundary conditions. The blow-up rate and blow-up profile are gained if the parameters an...This paper deals with positive solutions to a class of nonlocal and degenerate quasilinear parabolic system with null Dirichlet boundary conditions. The blow-up rate and blow-up profile are gained if the parameters and the initial data satisfy some conditions.展开更多
This paper deals with the blow-up rate estimates of solutions for semilinear parabolic systems coupled in an equation and a boundary condition. The upper and lower bounds of blow-up rates have been obtained.
This paper deals with propagations of singularities in solutions to a parabolic system coupled with nonlocal nonlinear sources. The estimates for the four possible blow-up rates as well as the boundary layer profiles ...This paper deals with propagations of singularities in solutions to a parabolic system coupled with nonlocal nonlinear sources. The estimates for the four possible blow-up rates as well as the boundary layer profiles are established. The critical exponent of the system is determined also.展开更多
In this paper, we investigate the blow-up behavior of solutions of a parabolic equation with localized reactions. We completely classify blow-up solutions into the total blow-up case and the single point blow-up case,...In this paper, we investigate the blow-up behavior of solutions of a parabolic equation with localized reactions. We completely classify blow-up solutions into the total blow-up case and the single point blow-up case, and give the blow-up rates of solutions near the blow-up time which improve or extend previous results of several authors. Our proofs rely on the maximum principle, a variant of the eigenfunction method and an initial data construction method.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant Nos.10471013,10471022)the Ministry of Education of China Science and Technology Major Projects (Grant No.104090)
文摘This paper deals with a semi-linear parabolic system with nonlinear nonlocal sources and nonlocal boundaries. By using super-and sub-solution techniques, we first give the sufficient conditions that the classical solution exists globally and blows up in a finite time respectively, and then give the necessary and sufficient conditions that two components u and ν blow up simultaneously. Finally, the uniform blow-up profiles in the interior are presented.
基金supported by the National Natural Science Foundation of China (No.10671210)the Foundation of Jiangsu Education Commission (No.07KJD110166)+1 种基金the Postdoctoral Research Foundation of Jiangsu Province (No.0702004C)the Project of Nantong University (Nos.06Z011,08B02)
文摘This paper deals with positive solutions to a class of nonlocal and degenerate quasilinear parabolic system with null Dirichlet boundary conditions. The blow-up rate and blow-up profile are gained if the parameters and the initial data satisfy some conditions.
基金the National Natural Science Foundation of China (Grant No. 19831060) Hwa Ying Culture & Education Foundation.
文摘This paper deals with the blow-up rate estimates of solutions for semilinear parabolic systems coupled in an equation and a boundary condition. The upper and lower bounds of blow-up rates have been obtained.
基金supported by the National Natural Science Foundation of China (Grant No. 10771024)
文摘This paper deals with propagations of singularities in solutions to a parabolic system coupled with nonlocal nonlinear sources. The estimates for the four possible blow-up rates as well as the boundary layer profiles are established. The critical exponent of the system is determined also.
基金Supported by the National Natural Science Foundation of China(No.10601011 and 10701024)
文摘In this paper, we investigate the blow-up behavior of solutions of a parabolic equation with localized reactions. We completely classify blow-up solutions into the total blow-up case and the single point blow-up case, and give the blow-up rates of solutions near the blow-up time which improve or extend previous results of several authors. Our proofs rely on the maximum principle, a variant of the eigenfunction method and an initial data construction method.