Through systematical experiment design, the physical blowing agent(PBA) mass loss of bio-based polyurethane rigid foam(PURF)in the foaming process was measured and calculated in this study, and different eco-friendly ...Through systematical experiment design, the physical blowing agent(PBA) mass loss of bio-based polyurethane rigid foam(PURF)in the foaming process was measured and calculated in this study, and different eco-friendly PBA mass losses were measured quantitatively for the first time. The core of the proposed method is to add water to replace the difference, and this method has a high fault tolerance rate for different foaming forms of foams. The method was proved to be stable and reliable through the standard deviations σ1and σ2for R1(ratio of the PBA mass loss to the material total mass except the PBA) and R2(ratio of the PBA mass loss to the PBA mass in the material total mass) in parallel experiments. It can be used to measure and calculate the actual PBA mass loss in the foaming process of both bio-based and petroleumbased PURF. The results show that the PBA mass loss in PURF with different PBA systems is controlled by its initial mass content of PBA in PU materials ω. The main way for PBA to dissipate into the air is evaporation/escape along the upper surface of foam. This study further reveals the mechanism of PBA mass loss: the evaporation/escape of PBA along the upper surface of foam is a typical diffusion behavior. Its spread power comes from the difference between the chemical potential of PBA in the interface layer and that in the outside air. For a certain PURF system, R1has approximately linear relationship with the initial mass content of PBA in PU materials ω, which can be expressed by the functional relationship R1= kω, where k is a variable related to PBA’s own attributes.展开更多
Cryogenic insulation material rigid polyurethane(PU)foams were developed using bio-based and recycled feedstock.Polyols obtained from tall oil fatty acids produced as a side stream of wood biomass pulping and recycled...Cryogenic insulation material rigid polyurethane(PU)foams were developed using bio-based and recycled feedstock.Polyols obtained from tall oil fatty acids produced as a side stream of wood biomass pulping and recycled polyethylene terephthalate were used to develop rigid PU foam formulations.The 4th generation physical blowing agents with low global warming potential and low ozone depletion potential were used to develop rigid PU foam cryogenic insulation with excellent mechanical and thermal properties.Obtained rigid PU foams had a thermal conductivity coefficient as low as 0.0171 W/m·K and an apparent density of 37-40 kg/m^(3).The developed rigid PU foams had anisotropic compression strength properties,which were higher parallel to the foaming direction.Moreover,the compression strength was also influenced by the type of applied bio-based polyol.The bio-based polyols with higher OH group functionality delivered higher crosslinking density of polymer matrix;thus,the mechanical properties were also higher.The mechanical strength of the foams increased when materials were tested at liquid nitrogen temperature due to the stiffening of the polymer matrix.The thermal properties of the developed materials were determined using differential scanning calorimetry,dynamic mechanical analysis,and thermogravimetric analysis methods.Lastly,the developed rigid PU foams had good adhesion to the aluminium substrate before and after applying cyroshock and an excellent safety coefficient of 4-5.Rigid PU foams developed using Solstice LBA delivered adhesion strength of~0.5 MPa and may be considered for application as cryogenic insulation in the aerospace industry.展开更多
文摘Through systematical experiment design, the physical blowing agent(PBA) mass loss of bio-based polyurethane rigid foam(PURF)in the foaming process was measured and calculated in this study, and different eco-friendly PBA mass losses were measured quantitatively for the first time. The core of the proposed method is to add water to replace the difference, and this method has a high fault tolerance rate for different foaming forms of foams. The method was proved to be stable and reliable through the standard deviations σ1and σ2for R1(ratio of the PBA mass loss to the material total mass except the PBA) and R2(ratio of the PBA mass loss to the PBA mass in the material total mass) in parallel experiments. It can be used to measure and calculate the actual PBA mass loss in the foaming process of both bio-based and petroleumbased PURF. The results show that the PBA mass loss in PURF with different PBA systems is controlled by its initial mass content of PBA in PU materials ω. The main way for PBA to dissipate into the air is evaporation/escape along the upper surface of foam. This study further reveals the mechanism of PBA mass loss: the evaporation/escape of PBA along the upper surface of foam is a typical diffusion behavior. Its spread power comes from the difference between the chemical potential of PBA in the interface layer and that in the outside air. For a certain PURF system, R1has approximately linear relationship with the initial mass content of PBA in PU materials ω, which can be expressed by the functional relationship R1= kω, where k is a variable related to PBA’s own attributes.
基金funded by projects“Smart Materials,Photonics,Technologies and Engineering Ecosystem(MOTE)”(Contract No.VPP-EM-FOTONIKA-2022/1-0001)“Bio-Based Cryogenic Insulation for Aerospace Application(BioSpace)”(Contract No.4000135271/21/NL/SC).
文摘Cryogenic insulation material rigid polyurethane(PU)foams were developed using bio-based and recycled feedstock.Polyols obtained from tall oil fatty acids produced as a side stream of wood biomass pulping and recycled polyethylene terephthalate were used to develop rigid PU foam formulations.The 4th generation physical blowing agents with low global warming potential and low ozone depletion potential were used to develop rigid PU foam cryogenic insulation with excellent mechanical and thermal properties.Obtained rigid PU foams had a thermal conductivity coefficient as low as 0.0171 W/m·K and an apparent density of 37-40 kg/m^(3).The developed rigid PU foams had anisotropic compression strength properties,which were higher parallel to the foaming direction.Moreover,the compression strength was also influenced by the type of applied bio-based polyol.The bio-based polyols with higher OH group functionality delivered higher crosslinking density of polymer matrix;thus,the mechanical properties were also higher.The mechanical strength of the foams increased when materials were tested at liquid nitrogen temperature due to the stiffening of the polymer matrix.The thermal properties of the developed materials were determined using differential scanning calorimetry,dynamic mechanical analysis,and thermogravimetric analysis methods.Lastly,the developed rigid PU foams had good adhesion to the aluminium substrate before and after applying cyroshock and an excellent safety coefficient of 4-5.Rigid PU foams developed using Solstice LBA delivered adhesion strength of~0.5 MPa and may be considered for application as cryogenic insulation in the aerospace industry.