In this paper,we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals.Two groups of lasing peaks,of which the full widith at half maximum is about...In this paper,we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals.Two groups of lasing peaks,of which the full widith at half maximum is about 0.3 nm,are clearly observed.The shorter-and longer-wavelength modes are associated with the excitation of the single laser dye(DCM) monomers and dimers respectively.The experimental results show that the competition between the two groups of the lasing peaks can be controlled by varying the polarization of the pump light.When the polarization of the pump light is rotated from 0?to 90?,the intensity of the shorter-wavelength lasing peak group reduces while the intensity of the longer-wavelength lasing peak group increases.In addition,a red shift of the longer-wavelength modes is also observed and the physical mechanisms behind the red-shift phenomenon are discussed.展开更多
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ...The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474021 and 51333001)the Key Program for International S&T Cooperation Projects of China(Grant No.2013DFB50340)+1 种基金the Issues of Priority Development Areas of the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120001130005)the Key(Key Grant)Project of Chinese Ministry of Education(Grant No.313002)
文摘In this paper,we investigate the bichromatic coherent random lasing actions from the dye-doped polymer stabilized blue phase liquid crystals.Two groups of lasing peaks,of which the full widith at half maximum is about 0.3 nm,are clearly observed.The shorter-and longer-wavelength modes are associated with the excitation of the single laser dye(DCM) monomers and dimers respectively.The experimental results show that the competition between the two groups of the lasing peaks can be controlled by varying the polarization of the pump light.When the polarization of the pump light is rotated from 0?to 90?,the intensity of the shorter-wavelength lasing peak group reduces while the intensity of the longer-wavelength lasing peak group increases.In addition,a red shift of the longer-wavelength modes is also observed and the physical mechanisms behind the red-shift phenomenon are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304074,61475042,and 11274088)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2015202320 and GCC2014048)the Key Subject Construction Project of Hebei Province University,China
文摘The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.