In Kuwait, dairy farming faces challenges due to its significant water demands. The current study assessed seasonal patterns of water use to estimate the blue water footprint (WF) and grey WF per kg of fat protein cor...In Kuwait, dairy farming faces challenges due to its significant water demands. The current study assessed seasonal patterns of water use to estimate the blue water footprint (WF) and grey WF per kg of fat protein corrected milk (FPCM) for confined dairy farming systems in Kuwait. Blue and grey WFs were evaluated using data from three operational farms. The average blue WF (L<span style="white-space:nowrap;">·</span>kg<sup>-1</sup> FPCM) was estimated to be 54.5 ± 4.0 L<span style="white-space:nowrap;">·</span>kg<sup>-1</sup> in summer and 19.2 ± 0.8 L<span style="white-space:nowrap;">·</span>kg<sup>-1</sup> in winter. The average grey WF (generated from milk house wastewater) was assessed on bimonthly basis and determined based on its phosphate (PO4) concentration (82.2 ± 14.3 mg<span style="white-space:nowrap;">·</span>L<sup>-1</sup>) which is the most limiting factor to be 23.0 ± 9.0 L<span style="white-space:nowrap;">·</span>kg<sup>-1</sup> FPCM d<sup>-1</sup>. The outcomes indicate that enhancing the performance of dairy cows and adopting alternative water management strategies can play a role in minimizing the impacts of confined dairy farming systems in Kuwait on water quality and quantity.展开更多
In this study we estimate agricultural water footprint and its components from consumption perspective in arid and semi-arid region like Iran. This study is based on blue water consumption in irrigated land. Iran has ...In this study we estimate agricultural water footprint and its components from consumption perspective in arid and semi-arid region like Iran. This study is based on blue water consumption in irrigated land. Iran has imported net virtual water about 11.64 billion cubic meters (bcm) as international crop trade in 2005-2006. Therefore, Iran has depended on virtual water imports. By conserving about 60% irrigation efficiency, the total water requirement to produce imported crops in Iran is nearly 20.78 billion cubic meters. It is nearly 9 percent of renewable water resources and 12.65% agricultural appropriated water which has added to internal water resources. Agricultural virtual water budget is about 112.78 Gm3/yr. Agricultural water footprint is 110.2 Gm3/yr. About 12.83% of agricultural water footprint of Iran is related to external water resources on the country boundaries. It means external water footprint. Water dependency, water self-sufficiency and water scarcity indexes in agricultural sector of Iran, are estimated 10.1%, 89.9% and 70.8%, respectively.展开更多
Water footprint of production can be used to identify pressure on national or regional water resources generated by production activities. Water stress is defined as the ratio of water use (the difference between a r...Water footprint of production can be used to identify pressure on national or regional water resources generated by production activities. Water stress is defined as the ratio of water use (the difference between a re- gional water footprint of production and a green water footprint) to renewable water resources available in a country or region. Water stress can be used to identify pressure on national or regional water resources generated by production activities. This paper estimates the water footprint of production and the water stress in China during the years 1985-2009. The result shows that China's water footprint of production increased from 781.58×109 m^3 in 1985 to 1109.76 × 10^9 m^3 in 2009. Mega-cities and regions with less agriculture production due to local climatic conditions (Tibet and Qinghai) had lower water footprint of production, while the provinces (Henan, Shandong) with higher agriculture production had higher footprint. Provinces with severe water stress increased from 6 in 1985 to 9 in 2009. High to severe water stress exists mainly in mega-cities and agricultural areas located in the downstream areas of the Yellow River and the Yangtze River in North and Central China. The outlook for water resources pressure in China is not optimistic, with areas of stress expanding from northern to southern of China.展开更多
为兼顾灌溉用水效率和总量控制评估区域农业用水效率,结合水足迹与灌溉发展状况构建了农业用水效果评价指标(agricultural water use effect,AWE),AWE越小农业用水效果越好。在核算2000—2014年间31个省区农作物水足迹的基础上,分析了中...为兼顾灌溉用水效率和总量控制评估区域农业用水效率,结合水足迹与灌溉发展状况构建了农业用水效果评价指标(agricultural water use effect,AWE),AWE越小农业用水效果越好。在核算2000—2014年间31个省区农作物水足迹的基础上,分析了中国AWE的时空格局及其与灌溉用水效率指标之间的关系。结果显示:中国年均农作物水足迹为1.097 2×10^(12) m^3,蓝水、绿水足迹分别占13.1%和86.7%,且均随时间增加;单位耕地面积农作物水足迹及绿水比例均呈现由东南向西北递减,研究时段内灌溉效率稳步提升,而由于灌溉用水规模的扩大和蓝水足迹比例的增长,AWE由2003年的0.113增长到2014年的0.137,中国农业用水效果呈恶化趋势;AWE空间差异大,且在不同年份均表现为黄淮海平原和西部省区较大而东南沿海较小;经济发达地区农业用水效果有明显改善趋势,而粮食增产任务加大的黑龙江省AWE的增速最大;AWE与传统灌溉用水效率评价指标无空间一致性,灌溉效率和水分生产率高的北方农业主产区应注重农业生产用水效果的评估与提升。农业用水效果评价可为区域灌溉用水效率提升与总量控制的科学研究与决策实践依据。展开更多
文摘In Kuwait, dairy farming faces challenges due to its significant water demands. The current study assessed seasonal patterns of water use to estimate the blue water footprint (WF) and grey WF per kg of fat protein corrected milk (FPCM) for confined dairy farming systems in Kuwait. Blue and grey WFs were evaluated using data from three operational farms. The average blue WF (L<span style="white-space:nowrap;">·</span>kg<sup>-1</sup> FPCM) was estimated to be 54.5 ± 4.0 L<span style="white-space:nowrap;">·</span>kg<sup>-1</sup> in summer and 19.2 ± 0.8 L<span style="white-space:nowrap;">·</span>kg<sup>-1</sup> in winter. The average grey WF (generated from milk house wastewater) was assessed on bimonthly basis and determined based on its phosphate (PO4) concentration (82.2 ± 14.3 mg<span style="white-space:nowrap;">·</span>L<sup>-1</sup>) which is the most limiting factor to be 23.0 ± 9.0 L<span style="white-space:nowrap;">·</span>kg<sup>-1</sup> FPCM d<sup>-1</sup>. The outcomes indicate that enhancing the performance of dairy cows and adopting alternative water management strategies can play a role in minimizing the impacts of confined dairy farming systems in Kuwait on water quality and quantity.
文摘In this study we estimate agricultural water footprint and its components from consumption perspective in arid and semi-arid region like Iran. This study is based on blue water consumption in irrigated land. Iran has imported net virtual water about 11.64 billion cubic meters (bcm) as international crop trade in 2005-2006. Therefore, Iran has depended on virtual water imports. By conserving about 60% irrigation efficiency, the total water requirement to produce imported crops in Iran is nearly 20.78 billion cubic meters. It is nearly 9 percent of renewable water resources and 12.65% agricultural appropriated water which has added to internal water resources. Agricultural virtual water budget is about 112.78 Gm3/yr. Agricultural water footprint is 110.2 Gm3/yr. About 12.83% of agricultural water footprint of Iran is related to external water resources on the country boundaries. It means external water footprint. Water dependency, water self-sufficiency and water scarcity indexes in agricultural sector of Iran, are estimated 10.1%, 89.9% and 70.8%, respectively.
基金National Key Technology Research and Development Program of China(2016YFC0503403)Projects of China geological survey(DD20160106)
文摘Water footprint of production can be used to identify pressure on national or regional water resources generated by production activities. Water stress is defined as the ratio of water use (the difference between a re- gional water footprint of production and a green water footprint) to renewable water resources available in a country or region. Water stress can be used to identify pressure on national or regional water resources generated by production activities. This paper estimates the water footprint of production and the water stress in China during the years 1985-2009. The result shows that China's water footprint of production increased from 781.58×109 m^3 in 1985 to 1109.76 × 10^9 m^3 in 2009. Mega-cities and regions with less agriculture production due to local climatic conditions (Tibet and Qinghai) had lower water footprint of production, while the provinces (Henan, Shandong) with higher agriculture production had higher footprint. Provinces with severe water stress increased from 6 in 1985 to 9 in 2009. High to severe water stress exists mainly in mega-cities and agricultural areas located in the downstream areas of the Yellow River and the Yangtze River in North and Central China. The outlook for water resources pressure in China is not optimistic, with areas of stress expanding from northern to southern of China.
文摘为兼顾灌溉用水效率和总量控制评估区域农业用水效率,结合水足迹与灌溉发展状况构建了农业用水效果评价指标(agricultural water use effect,AWE),AWE越小农业用水效果越好。在核算2000—2014年间31个省区农作物水足迹的基础上,分析了中国AWE的时空格局及其与灌溉用水效率指标之间的关系。结果显示:中国年均农作物水足迹为1.097 2×10^(12) m^3,蓝水、绿水足迹分别占13.1%和86.7%,且均随时间增加;单位耕地面积农作物水足迹及绿水比例均呈现由东南向西北递减,研究时段内灌溉效率稳步提升,而由于灌溉用水规模的扩大和蓝水足迹比例的增长,AWE由2003年的0.113增长到2014年的0.137,中国农业用水效果呈恶化趋势;AWE空间差异大,且在不同年份均表现为黄淮海平原和西部省区较大而东南沿海较小;经济发达地区农业用水效果有明显改善趋势,而粮食增产任务加大的黑龙江省AWE的增速最大;AWE与传统灌溉用水效率评价指标无空间一致性,灌溉效率和水分生产率高的北方农业主产区应注重农业生产用水效果的评估与提升。农业用水效果评价可为区域灌溉用水效率提升与总量控制的科学研究与决策实践依据。