With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud...With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.展开更多
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est...Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.展开更多
The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of...The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of failure and lack of trust in the centralized system.However,it also brings new problems to the health information in the cloud storage environment,such as attribute leakage,low consensus efficiency,complex permission updates,and so on.This paper proposes an access control scheme with fine-grained attribute revocation,keyword search,and traceability of the attribute private key distribution process.Blockchain technology tracks the authorization of attribute private keys.The credit scoring method improves the Raft protocol in consensus efficiency.Besides,the interplanetary file system(IPFS)addresses the capacity deficit of blockchain.Under the premise of hiding policy,the research proposes a fine-grained access control method based on users,user attributes,and file structure.It optimizes the data-sharing mode.At the same time,Proxy Re-Encryption(PRE)technology is used to update the access rights.The proposed scheme proved to be secure.Comparative analysis and experimental results show that the proposed scheme has higher efficiency and more functions.It can meet the needs of medical institutions.展开更多
We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c...We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.展开更多
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ...Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).展开更多
With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate...With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform.展开更多
Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduct...Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduction is undoubtedly necessary for line drawings.However,most existing methods for artifact drawing rely on the principles of orthographic projection that always cannot avoid angle occlusion and data overlapping while the surface of cultural relics is complex.Therefore,conformal mapping was introduced as a dimensionality reduction way to compensate for the limitation of orthographic projection.Based on the given criteria for assessing surface complexity,this paper proposed a three-dimensional feature guideline extraction method for complex cultural relic surfaces.A 2D and 3D combined factor that measured the importance of points on describing surface features,vertex weight,was designed.Then the selection threshold for feature guideline extraction was determined based on the differences between vertex weight and shape index distributions.The feasibility and stability were verified through experiments conducted on real cultural relic surface data.Results demonstrated the ability of the method to address the challenges associated with the automatic generation of line drawings for complex surfaces.The extraction method and the obtained results will be useful for line graphic drawing,displaying and propaganda of cultural relics.展开更多
Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this r...Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this regard. The findings have shown that many challenges are linked to edge computing, such as privacy concerns, security breaches, high costs, low efficiency, etc. Therefore, there is a need to implement proper security measures to overcome these issues. Using emerging trends, like machine learning, encryption, artificial intelligence, real-time monitoring, etc., can help mitigate security issues. They can also develop a secure and safe future in cloud computing. It was concluded that the security implications of edge computing can easily be covered with the help of new technologies and techniques.展开更多
In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it...In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it has unveiled inherent uncertainties, especially for deep layer clouds. Addressing this knowledge gap, we conducted comprehensive large eddy simulations and comparative analyses focused on terrestrial regions. Our investigation revealed that cloud formation adheres to the tenets of Bernoulli trials, illustrating power-law scaling that remains consistent regardless of the inherent deep layer cloud attributes existing between cloud size and the number of clouds. This scaling paradigm encompasses liquid, ice, and mixed phases in deep layer clouds. The exponent characterizing the interplay between cloud scale and number in the deep layer cloud, specifically for liquid, ice, or mixed-phase clouds, resembles that of shallow convection,but converges closely to zero. This convergence signifies a propensity for diminished cloud numbers and sizes within deep layer clouds. Notably, the infusion of abundant moisture and the release of latent heat by condensation within the lower atmospheric strata make substantial contributions. However, this role in ice phase formation is limited. The emergence of liquid and ice phases in deep layer clouds is facilitated by the latent heat and influenced by the wind shear inherent in the middle levels. These interrelationships hold potential applications in formulating parameterizations and post-processing model outcomes.展开更多
In the cloud environment,ensuring a high level of data security is in high demand.Data planning storage optimization is part of the whole security process in the cloud environment.It enables data security by avoiding ...In the cloud environment,ensuring a high level of data security is in high demand.Data planning storage optimization is part of the whole security process in the cloud environment.It enables data security by avoiding the risk of data loss and data overlapping.The development of data flow scheduling approaches in the cloud environment taking security parameters into account is insufficient.In our work,we propose a data scheduling model for the cloud environment.Themodel is made up of three parts that together help dispatch user data flow to the appropriate cloudVMs.The first component is the Collector Agent whichmust periodically collect information on the state of the network links.The second one is the monitoring agent which must then analyze,classify,and make a decision on the state of the link and finally transmit this information to the scheduler.The third one is the scheduler who must consider previous information to transfer user data,including fair distribution and reliable paths.It should be noted that each part of the proposedmodel requires the development of its algorithms.In this article,we are interested in the development of data transfer algorithms,including fairness distribution with the consideration of a stable link state.These algorithms are based on the grouping of transmitted files and the iterative method.The proposed algorithms showthe performances to obtain an approximate solution to the studied problem which is an NP-hard(Non-Polynomial solution)problem.The experimental results show that the best algorithm is the half-grouped minimum excluding(HME),with a percentage of 91.3%,an average deviation of 0.042,and an execution time of 0.001 s.展开更多
This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering...This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering various cloud infrastructure offerings and security models. Additionally, it deeply analyzes real-life case studies illustrating successful cloud migrations and highlights common information security threats in current cloud computing. The article concludes by offering recommendations to businesses to protect themselves from cloud data breaches and providing insights into selecting a suitable cloud services provider from an information security perspective.展开更多
Amid the landscape of Cloud Computing(CC),the Cloud Datacenter(DC)stands as a conglomerate of physical servers,whose performance can be hindered by bottlenecks within the realm of proliferating CC services.A linchpin ...Amid the landscape of Cloud Computing(CC),the Cloud Datacenter(DC)stands as a conglomerate of physical servers,whose performance can be hindered by bottlenecks within the realm of proliferating CC services.A linchpin in CC’s performance,the Cloud Service Broker(CSB),orchestrates DC selection.Failure to adroitly route user requests with suitable DCs transforms the CSB into a bottleneck,endangering service quality.To tackle this,deploying an efficient CSB policy becomes imperative,optimizing DC selection to meet stringent Qualityof-Service(QoS)demands.Amidst numerous CSB policies,their implementation grapples with challenges like costs and availability.This article undertakes a holistic review of diverse CSB policies,concurrently surveying the predicaments confronted by current policies.The foremost objective is to pinpoint research gaps and remedies to invigorate future policy development.Additionally,it extensively clarifies various DC selection methodologies employed in CC,enriching practitioners and researchers alike.Employing synthetic analysis,the article systematically assesses and compares myriad DC selection techniques.These analytical insights equip decision-makers with a pragmatic framework to discern the apt technique for their needs.In summation,this discourse resoundingly underscores the paramount importance of adept CSB policies in DC selection,highlighting the imperative role of efficient CSB policies in optimizing CC performance.By emphasizing the significance of these policies and their modeling implications,the article contributes to both the general modeling discourse and its practical applications in the CC domain.展开更多
Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in p...Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.展开更多
Cloud computing is the new norm within business entities as businesses try to keep up with technological advancements and user needs. The concept is defined as a computing environment allowing for remote outsourcing o...Cloud computing is the new norm within business entities as businesses try to keep up with technological advancements and user needs. The concept is defined as a computing environment allowing for remote outsourcing of storage and computing resources. A hybrid cloud environment is an excellent example of cloud computing. Specifically, the hybrid system provides organizations with increased scalability and control over their data and support for a remote workforce. However, hybrid cloud systems are expensive as organizations operate different infrastructures while introducing complexity to the organization’s activities. Data security is critical among the most vital concerns that have resulted from the use of cloud computing, thus, affecting the rate of user adoption and acceptance. This article, borrowing from the hybrid cloud computing system, recommends combining traditional and modern data security systems. Traditional data security systems have proven effective in their respective roles, with the main challenge arising from their recognition of context and connectivity. Therefore, integrating traditional and modern designs is recommended to enhance effectiveness, context, connectivity, and efficiency.展开更多
基金supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(RS-2024-00399401,Development of Quantum-Safe Infrastructure Migration and Quantum Security Verification Technologies).
文摘With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.
基金supported in part by the Nationa Natural Science Foundation of China (61876011)the National Key Research and Development Program of China (2022YFB4703700)+1 种基金the Key Research and Development Program 2020 of Guangzhou (202007050002)the Key-Area Research and Development Program of Guangdong Province (2020B090921003)。
文摘Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.
基金This research was funded by the National Natural Science Foundation of China,Grant Number 62162039the Shaanxi Provincial Key R&D Program,China with Grant Number 2020GY-041.
文摘The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of failure and lack of trust in the centralized system.However,it also brings new problems to the health information in the cloud storage environment,such as attribute leakage,low consensus efficiency,complex permission updates,and so on.This paper proposes an access control scheme with fine-grained attribute revocation,keyword search,and traceability of the attribute private key distribution process.Blockchain technology tracks the authorization of attribute private keys.The credit scoring method improves the Raft protocol in consensus efficiency.Besides,the interplanetary file system(IPFS)addresses the capacity deficit of blockchain.Under the premise of hiding policy,the research proposes a fine-grained access control method based on users,user attributes,and file structure.It optimizes the data-sharing mode.At the same time,Proxy Re-Encryption(PRE)technology is used to update the access rights.The proposed scheme proved to be secure.Comparative analysis and experimental results show that the proposed scheme has higher efficiency and more functions.It can meet the needs of medical institutions.
基金supported by the National Natural Science Foundation of China(Grant No.92365206)the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)+1 种基金supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.
文摘Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).
基金supported by the Beijing Academy of Quantum Information Sciencessupported by the National Natural Science Foundation of China(Grant No.92365206)+2 种基金the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform.
基金National Natural Science Foundation of China(Nos.42071444,42101444)。
文摘Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduction is undoubtedly necessary for line drawings.However,most existing methods for artifact drawing rely on the principles of orthographic projection that always cannot avoid angle occlusion and data overlapping while the surface of cultural relics is complex.Therefore,conformal mapping was introduced as a dimensionality reduction way to compensate for the limitation of orthographic projection.Based on the given criteria for assessing surface complexity,this paper proposed a three-dimensional feature guideline extraction method for complex cultural relic surfaces.A 2D and 3D combined factor that measured the importance of points on describing surface features,vertex weight,was designed.Then the selection threshold for feature guideline extraction was determined based on the differences between vertex weight and shape index distributions.The feasibility and stability were verified through experiments conducted on real cultural relic surface data.Results demonstrated the ability of the method to address the challenges associated with the automatic generation of line drawings for complex surfaces.The extraction method and the obtained results will be useful for line graphic drawing,displaying and propaganda of cultural relics.
文摘Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this regard. The findings have shown that many challenges are linked to edge computing, such as privacy concerns, security breaches, high costs, low efficiency, etc. Therefore, there is a need to implement proper security measures to overcome these issues. Using emerging trends, like machine learning, encryption, artificial intelligence, real-time monitoring, etc., can help mitigate security issues. They can also develop a secure and safe future in cloud computing. It was concluded that the security implications of edge computing can easily be covered with the help of new technologies and techniques.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No.2019QZKK010203)the National Natural Science Foundation of China (Grant No.42175174 and 41975130)+1 种基金the Natural Science Foundation of Sichuan Province (Grant No.2022NSFSC1092)the Sichuan Provincial Innovation Training Program for College Students (Grant No.S202210621009)。
文摘In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it has unveiled inherent uncertainties, especially for deep layer clouds. Addressing this knowledge gap, we conducted comprehensive large eddy simulations and comparative analyses focused on terrestrial regions. Our investigation revealed that cloud formation adheres to the tenets of Bernoulli trials, illustrating power-law scaling that remains consistent regardless of the inherent deep layer cloud attributes existing between cloud size and the number of clouds. This scaling paradigm encompasses liquid, ice, and mixed phases in deep layer clouds. The exponent characterizing the interplay between cloud scale and number in the deep layer cloud, specifically for liquid, ice, or mixed-phase clouds, resembles that of shallow convection,but converges closely to zero. This convergence signifies a propensity for diminished cloud numbers and sizes within deep layer clouds. Notably, the infusion of abundant moisture and the release of latent heat by condensation within the lower atmospheric strata make substantial contributions. However, this role in ice phase formation is limited. The emergence of liquid and ice phases in deep layer clouds is facilitated by the latent heat and influenced by the wind shear inherent in the middle levels. These interrelationships hold potential applications in formulating parameterizations and post-processing model outcomes.
基金the deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IFP-2022-34).
文摘In the cloud environment,ensuring a high level of data security is in high demand.Data planning storage optimization is part of the whole security process in the cloud environment.It enables data security by avoiding the risk of data loss and data overlapping.The development of data flow scheduling approaches in the cloud environment taking security parameters into account is insufficient.In our work,we propose a data scheduling model for the cloud environment.Themodel is made up of three parts that together help dispatch user data flow to the appropriate cloudVMs.The first component is the Collector Agent whichmust periodically collect information on the state of the network links.The second one is the monitoring agent which must then analyze,classify,and make a decision on the state of the link and finally transmit this information to the scheduler.The third one is the scheduler who must consider previous information to transfer user data,including fair distribution and reliable paths.It should be noted that each part of the proposedmodel requires the development of its algorithms.In this article,we are interested in the development of data transfer algorithms,including fairness distribution with the consideration of a stable link state.These algorithms are based on the grouping of transmitted files and the iterative method.The proposed algorithms showthe performances to obtain an approximate solution to the studied problem which is an NP-hard(Non-Polynomial solution)problem.The experimental results show that the best algorithm is the half-grouped minimum excluding(HME),with a percentage of 91.3%,an average deviation of 0.042,and an execution time of 0.001 s.
文摘This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering various cloud infrastructure offerings and security models. Additionally, it deeply analyzes real-life case studies illustrating successful cloud migrations and highlights common information security threats in current cloud computing. The article concludes by offering recommendations to businesses to protect themselves from cloud data breaches and providing insights into selecting a suitable cloud services provider from an information security perspective.
文摘Amid the landscape of Cloud Computing(CC),the Cloud Datacenter(DC)stands as a conglomerate of physical servers,whose performance can be hindered by bottlenecks within the realm of proliferating CC services.A linchpin in CC’s performance,the Cloud Service Broker(CSB),orchestrates DC selection.Failure to adroitly route user requests with suitable DCs transforms the CSB into a bottleneck,endangering service quality.To tackle this,deploying an efficient CSB policy becomes imperative,optimizing DC selection to meet stringent Qualityof-Service(QoS)demands.Amidst numerous CSB policies,their implementation grapples with challenges like costs and availability.This article undertakes a holistic review of diverse CSB policies,concurrently surveying the predicaments confronted by current policies.The foremost objective is to pinpoint research gaps and remedies to invigorate future policy development.Additionally,it extensively clarifies various DC selection methodologies employed in CC,enriching practitioners and researchers alike.Employing synthetic analysis,the article systematically assesses and compares myriad DC selection techniques.These analytical insights equip decision-makers with a pragmatic framework to discern the apt technique for their needs.In summation,this discourse resoundingly underscores the paramount importance of adept CSB policies in DC selection,highlighting the imperative role of efficient CSB policies in optimizing CC performance.By emphasizing the significance of these policies and their modeling implications,the article contributes to both the general modeling discourse and its practical applications in the CC domain.
基金funded by the National Natural Science Foundation of China (Grant Nos. 42305150 and 42325501)the China Postdoctoral Science Foundation (Grant No. 2023M741774)。
文摘Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.
文摘Cloud computing is the new norm within business entities as businesses try to keep up with technological advancements and user needs. The concept is defined as a computing environment allowing for remote outsourcing of storage and computing resources. A hybrid cloud environment is an excellent example of cloud computing. Specifically, the hybrid system provides organizations with increased scalability and control over their data and support for a remote workforce. However, hybrid cloud systems are expensive as organizations operate different infrastructures while introducing complexity to the organization’s activities. Data security is critical among the most vital concerns that have resulted from the use of cloud computing, thus, affecting the rate of user adoption and acceptance. This article, borrowing from the hybrid cloud computing system, recommends combining traditional and modern data security systems. Traditional data security systems have proven effective in their respective roles, with the main challenge arising from their recognition of context and connectivity. Therefore, integrating traditional and modern designs is recommended to enhance effectiveness, context, connectivity, and efficiency.