期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Comparative Appraisal of Response Surface Methodology and Artificial Neural Network Method for Stabilized Turbulent Confined Jet Diffusion Flames Using Bluff-Body Burners
1
作者 Tahani S. Gendy Salwa A. Ghoneim Amal S. Zakhary 《World Journal of Engineering and Technology》 2020年第1期121-143,共23页
The present study was conducted to present the comparative modeling, predictive and generalization abilities of response surface methodology (RSM) and artificial neural network (ANN) for the thermal structure of stabi... The present study was conducted to present the comparative modeling, predictive and generalization abilities of response surface methodology (RSM) and artificial neural network (ANN) for the thermal structure of stabilized confined jet diffusion flames in the presence of different geometries of bluff-body burners. Two stabilizer disc burners tapered at 30° and 60° and another frustum cone of 60°/30° inclination angle were employed all having the same diameter of 80 (mm) acting as flame holders. The measured radial mean temperature profiles of the developed stabilized flames at different normalized axial distances (x/dj) were considered as the model example of the physical process. The RSM and ANN methods analyze the effect of the two operating parameters namely (r), the radial distance from the center line of the flame, and (x/dj) on the measured temperature of the flames, to find the predicted maximum temperature and the corresponding process variables. A three-layered Feed Forward Neural Network in conjugation with the hyperbolic tangent sigmoid (tansig) as transfer function and the optimized topology of 2:10:1 (input neurons: hidden neurons: output neurons) was developed. Also the ANN method has been employed to illustrate such effects in the three and two dimensions and shows the location of the predicted maximum temperature. The results indicated the superiority of ANN in the prediction capability as the ranges of R2 and F Ratio are 0.868 - 0.947 and 231.7 - 864.1 for RSM method compared to 0.964 - 0.987 and 2878.8 7580.7 for ANN method beside lower values for error analysis terms. 展开更多
关键词 STABILIZED TURBULENT Flames bluff-body Burners Thermal Structure Modeling Artificial NEURAL NETWORK Response Surface Methodology Multi-Layer PERCEPTRON Feed Forward NEURAL NETWORK
下载PDF
A numerical study on flame and large-scale flow structures in bluff-body stabilized flames 被引量:1
2
作者 Jing CHEN Hua ZHOU Zhuyin REN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第7期1646-1656,共11页
Large Eddy Simulations(LES) in conjunction with the Flamelet Progress Variable(FPV) approach have been performed to investigate the flame and large-scale flow structures in the bluff-body stabilized non-premixed flame... Large Eddy Simulations(LES) in conjunction with the Flamelet Progress Variable(FPV) approach have been performed to investigate the flame and large-scale flow structures in the bluff-body stabilized non-premixed flames, HM1 and HM3. The validity of the numerical methods is first verified by comparing the predicted velocity and composition fields with experimental measurements. Then the evolution of the flame and large-scale flow structures is analyzed when the flames approach blow-off. The analysis of instantaneous and statistical data indicates that there exists a shift of the control mechanism in the recirculation zone in the two flames. In the recirculation zone, HM1 flame is mainly controlled by the mixing effect and ignition mainly occurs in the outer shear layer. In HM3 flame, both the chemical reactions and mixing are important in the recirculation zone. The Proper Orthogonal Decomposition(POD) results show that the fluctuations in the outer shear layer are more intense in HM1, while the flow structures are more obvious in the outer vortex structure in HM3, due to the different control mechanism in the recirculation zone.It further shows that the flow structures in HM1 spread larger in the intense mixing zone due to higher temperature and less extinction. 展开更多
关键词 bluff-body stabilized FLAMES Large EDDY Simulation(LES) LARGE-SCALE flow structures PROPER ORTHOGONAL Decomposition(POD)
原文传递
A forced ignition probability analysis method using kernel formation analysis with turbulent transport and Lagrangian flame particle tracking
3
作者 Qing XIE Zhuyin REN +3 位作者 Ke WANG Hongjun LIN Shoutang SHANG Wei XIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期403-415,共13页
A forced ignition probability analysis method is developed for turbulent combustion,in which kernel formation is analyzed with local kernel formation criteria,and flame propagation and stabilization are simulated with... A forced ignition probability analysis method is developed for turbulent combustion,in which kernel formation is analyzed with local kernel formation criteria,and flame propagation and stabilization are simulated with Lagrangian flame particle tracking.For kernel formation,the effect of turbulent scalar transport on flammability is modelled through the incorporation of turbulenceinduced diffusion in a spherically outwardly propagating flame kernel model.The dependence of flammability limits on turbulent intensities is tabulated and serves as the flammability criterion for kernel formation.For Lagrangian flame particle tracking,flame particles are tracked in a structured grid with flow fields being interpolated from a Computational Fluid Dynamics(CFD)solution.The particle velocity follows a Langevin model consisting of a linear drift and an isotropic diffusion term.The Karlovitz number is employed for the extinction criterion,which compares chemical and turbulent timescales.The integration of the above two-step analysis approach with non-reacting CFD is achieved through a general interpolation interface suitable for general unstructured CFD grids.The method is demonstrated for a methane/air bluff-body flame,in which flow and fuel/air mixing characteristics are extracted from a non-reacting simulation.Results show that the computed ignition probability map agrees qualitatively with experimental results.A reduction of the ignition probability in the recirculation zone and a high ignition probability on the shear layer of the recirculation zone near the mean stoichiometric surface are well captured.The tools can facilitate optimization of spark placement and offer insights into ignition processes. 展开更多
关键词 bluff-body stabilized flame Igniting process Ignition criterion Ignition probability Lagrangian particle tracking
原文传递
Modelling ignition probability with pairwise mixing-reaction model for flame particle tracking
4
作者 Qing XIE Zhuyin REN Ke WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期523-534,共12页
Reduced order models for ignition analysis can offer insights into ignition processes and facilitate the combustor optimization.In this study,a Pairwise Mixing-Reaction(PMR)model is formulated to model the interaction... Reduced order models for ignition analysis can offer insights into ignition processes and facilitate the combustor optimization.In this study,a Pairwise Mixing-Reaction(PMR)model is formulated to model the interaction between the flame particle and the surrounding cell mixture during Lagrangian flame particle tracking.Specifically,the model accounts for the two-way coupling of mass and energy between the flame particle and the surrounding shell layer by modelling the corresponding turbulent mixing,chemical reaction and evaporation process if present.The state of a flame particle,e.g.,burnt,hot gas or extinguished,is determined based on particle temperature.This model can properly describe the ignition process with a spark kernel being initiated in a nonflammable region,which is of practical importance in certain turbine engines and has not been rigorously accounted for by the existing models based on the estimation of local Karlovitz number.The model is integrated into an ignition probability analysis platform and is demonstrated for a methane/air bluff-body flame with the flow and fuel/air mixing characteristics being extracted from a non-reacting simulation.The results show that for the spark location being at the extreme fuellean outer shear layer of the recirculation zone,PMR can yield ignition events with a significant number of active flame particles.The mechanisms for the survival of the initial flame particles and the entrainment of the survived flame particles into the recirculation zone are analyzed.The results also show that the ignition probability map from PMR agrees well with the experimental observation:a high ignition probability in the shear layer of the recirculation zone near the mean stoichiometric surface,and low ignition probabilities inside the recirculation zone and the top stagnation region of the recirculation zone.The parametric study shows that the predicted shape of the ignition progress factor and ignition probability is in general insensitive to the model parameters and the model is adequate for quantifying the regions with high ignition probabilities. 展开更多
关键词 bluff-body stabilized flame Igniting process Ignition probability Lagrangian particle tracking Pairwise mixing-reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部