As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura...As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.展开更多
Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural informa...Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural information is proposed to delineate homogeneous domains.This technique is then applied to a high and steep slope along a road.First,geological and geotechnical domains were described based on lithology,faults,and shear zones.Next,topological manifolds were used to eliminate the incompatibility between orientations and other parameters(i.e.trace length and roughness)so that the data concerning various properties of each discontinuity can be matched and characterized in the same Euclidean space.Thus,the influence of implicit combined effect in between parameter sequences on the homogeneous domains could be considered.Deep learning technique was employed to quantify abstract features of the characterization images of discontinuity properties,and to assess the similarity of rock mass structures.The results show that the technique can effectively distinguish structural variations and outperform conventional methods.It can handle multisource engineering geological information and multiple discontinuity parameters.This technique can also minimize the interference of human factors and delineate homogeneous domains based on orientations or multi-parameter with arbitrary distributions to satisfy different engineering requirements.展开更多
In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piece...In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation.展开更多
In our preceding paper, we gave some Pinching conditions of sectional curvature and holomorphic sectional curvature for a compact Kaehler submanifold Mn in a locally symmetric Bochner-Kaehler manifold (?)n+p to be t...In our preceding paper, we gave some Pinching conditions of sectional curvature and holomorphic sectional curvature for a compact Kaehler submanifold Mn in a locally symmetric Bochner-Kaehler manifold (?)n+p to be totally geodesic. As a continuation, this letter gives the Pinching conditions of Ricci curvature and scalar curvature for Mn in (?)n+p to be totally geodesic. The main results are as follows.展开更多
By a locally symmetric Bochner-Kaehler manifold is meant a Kaehler manifold with parallel Riemannian curvature tensor and vanishing Bochner curvature tensor. Complex space forms are special locally symmetric Bochner-K...By a locally symmetric Bochner-Kaehler manifold is meant a Kaehler manifold with parallel Riemannian curvature tensor and vanishing Bochner curvature tensor. Complex space forms are special locally symmetric Bochner-Kaehler manifolds.This letter gives some sufficient conditions for a compact Kaehler submanifold in a locally symmetric Bochner-Kaehler manifold to be totally geodesic. Main results are as follows.展开更多
This paper gives some sufficient conditions for a compact Kaehler submanifold M<sup>n</sup> in a locally symmetric Bochner-Kaehler manifold <sup>n+p</sup> to be totally geodesic. The conditions...This paper gives some sufficient conditions for a compact Kaehler submanifold M<sup>n</sup> in a locally symmetric Bochner-Kaehler manifold <sup>n+p</sup> to be totally geodesic. The conditions are given by inequalities which are established between. the sectional curvature(resp, holomorphic sectional curvature) of M<sup>n</sup> and the Ricci curvature of <sup>n+p</sup>. In particular, similar results in the case where <sup>n+p</sup> is a complex projective spathe are contained.展开更多
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ...The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.展开更多
In this paper, we deal with isommetric immersions of globally null warped product manifolds into Lorentzian manifolds with constant curvature c in codimension k≥3. Under the assumptions that the globally null warped ...In this paper, we deal with isommetric immersions of globally null warped product manifolds into Lorentzian manifolds with constant curvature c in codimension k≥3. Under the assumptions that the globally null warped product manifold has no points with the same constant sectional curvature c as the Lorentzian ambient, we show that such isometric immersion splits into warped product of isometric immersions.展开更多
In this paper, the concepts of topological space and differential manifold are introduced, and it is proved that the surface determined by function F (x<sub>2</sub>, x<sub>2</sub>, …, x<sub...In this paper, the concepts of topological space and differential manifold are introduced, and it is proved that the surface determined by function F (x<sub>2</sub>, x<sub>2</sub>, …, x<sub>t</sub>) of class C<sup>r</sup> in Euelidean R<sup>t</sup> is a differential manifold. Using the intersection of the tangent plane and the hypernormal of the differential manifold to construct the shared master key of participants, an intuitive, secure and complete (t,n)-threshold secret sharing scheme is designed. The paper is proved to be safe, and the probability of successful attack of attackers is only 1/p<sup>t</sup><sup>-1</sup>. When the prime number p is sufficiently large, the probability is almost 0. The results show that this scheme has the characteristics of single-parameter representation of the master key in the geometric method, and is more practical and easy to implement than the Blakley threshold secret sharing scheme.展开更多
Let L be the Laplace-Beltrami operator.On an n-dimensional(n≥2),complete,noncompact Riemannian manifold M,we prove that if 0<α<1,s>α/2 and f∈Hs(M),then the fractional Schr?dinger propagator e(it|L|α/2)(f...Let L be the Laplace-Beltrami operator.On an n-dimensional(n≥2),complete,noncompact Riemannian manifold M,we prove that if 0<α<1,s>α/2 and f∈Hs(M),then the fractional Schr?dinger propagator e(it|L|α/2)(f)(x)→f(x)a.e.as t→0.In addition,for when M is a Lie group,the rate of the convergence is also studied.These results are a non-trivial extension of results on Euclidean spaces and compact manifolds.展开更多
For three-dimensional vector fields,the governing formula of invariant manifolds grown from a hyperbolic cycle is given in cylindrical coordinates.The initial growth directions depend on the Jacobians of Poincaré...For three-dimensional vector fields,the governing formula of invariant manifolds grown from a hyperbolic cycle is given in cylindrical coordinates.The initial growth directions depend on the Jacobians of Poincarémap on that cycle,for which an evolution formula is deduced to reveal the relationship among Jacobians of different Poincarésections.The evolution formula also applies to cycles in arbitrary finite n-dimensional autonomous continuous-time dynamical systems.Non-Möbiusian/Möbiusian saddle cycles and a dummy X-cycle are constructed analytically as demonstration.A real-world numeric example of analyzing a magnetic field timeslice on EAST is presented.展开更多
The development of thermal stress in the exhaust manifold of a gasoline engine is considered.The problem is addresses in the frame of a combined approach wherefluid and structure are coupled using the GT-POWER and STA...The development of thermal stress in the exhaust manifold of a gasoline engine is considered.The problem is addresses in the frame of a combined approach wherefluid and structure are coupled using the GT-POWER and STAR-CCM+software.First,the external characteristic curve of the engine is compared with a one-dimen-sional simulation model,then the parameters of the model are modified until the curve matches the available experimental values.GT-POWER is then used to transfer the inlet boundary data under transient conditions to STAR-CCM+in real-time.The temperature profiles of the inner and outer walls of the exhaust manifold are obtained in this way,together with the thermal stress and thermal deformation of the exhaust manifold itself.Using this information,the original model is improved through the addition of connections.Moreover,the local branch pipes are optimized,leading to significant improvements in terms of thermal stress and thermal deforma-tion of the exhaust manifold(a 7%reduction in the maximum thermal stress).展开更多
Let M be a smooth manifold and S ⊆ M a properly embedded smooth submanifold. Suppose that we have a fibre metric on TM|<sub>s</sub> i.e. a positive definite real inner-product on T<sub>p</sub>M...Let M be a smooth manifold and S ⊆ M a properly embedded smooth submanifold. Suppose that we have a fibre metric on TM|<sub>s</sub> i.e. a positive definite real inner-product on T<sub>p</sub>M for all p ∈ S, which depends smoothly on p ∈ S. The purpose of this article is to figure out that the fibre metric on TM|s</sub> can always be extended to a Riemannian metric on TM from a special perspective.展开更多
An experimental study was conducted to investigate the properties of stratified regular or wavy two-phase flow in two parallel separators located after a manifold.A total of 103 experiments with various gas and liquid...An experimental study was conducted to investigate the properties of stratified regular or wavy two-phase flow in two parallel separators located after a manifold.A total of 103 experiments with various gas and liquid velocity combinations in three inlet pipes were conducted,including 77 groups of outlet pipe resistance symmetry and 26 groups of outlet pipe resistance asymmetry trials.The experimental results have revealed that when the gas-liquid flow rate is low,the degree of uneven splitting is high,and“extreme”conditions are attained.When the superficial gas velocity is greater than that established in the extreme case,the direction of the liquid-phase displacement is reversed,while that of the gas remains unchanged.Thus,the degree of gas phase bias tends to be mitigated with an increase in the gas velocity,while the uneven splitting degree of liquid approaches 10%.Finally,varying the gas-phase outlet pipe resistance is shown to effectively change the gas-liquid two-phase flow distribution.展开更多
In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric...In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric tensor of the Einstein manifold that represents a physical field in terms of the energy-momentum tensor that characterises the physical field. As illustrations, we first apply the general formulation to represent the perfect fluid as Einstein manifold. However, from the established relation between the metric tensor and the energy-momentum tensor, we show that if the trace of the energy-momentum tensor associated with a physical field is equal to zero then the corresponding physical field cannot be represented as an Einstein manifold. This situation applies to the electromagnetic field since the trace of the energy-momentum of the electromagnetic field vanishes. Nevertheless, we show that a system that consists of the electromagnetic field and non-interacting charged particles can be represented as an Einstein manifold since the trace of the corresponding energy-momentum of the system no longer vanishes. As a further investigation, we show that it is also possible to represent physical fields as maximally symmetric spaces of constant scalar curvature.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42277165)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821)the National Overseas Study Fund(Grant No.202106410040).
文摘As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.
基金the National Natural Science Foundation of China(Grant Nos.41941017 and U1702241).
文摘Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural information is proposed to delineate homogeneous domains.This technique is then applied to a high and steep slope along a road.First,geological and geotechnical domains were described based on lithology,faults,and shear zones.Next,topological manifolds were used to eliminate the incompatibility between orientations and other parameters(i.e.trace length and roughness)so that the data concerning various properties of each discontinuity can be matched and characterized in the same Euclidean space.Thus,the influence of implicit combined effect in between parameter sequences on the homogeneous domains could be considered.Deep learning technique was employed to quantify abstract features of the characterization images of discontinuity properties,and to assess the similarity of rock mass structures.The results show that the technique can effectively distinguish structural variations and outperform conventional methods.It can handle multisource engineering geological information and multiple discontinuity parameters.This technique can also minimize the interference of human factors and delineate homogeneous domains based on orientations or multi-parameter with arbitrary distributions to satisfy different engineering requirements.
基金supported in part by the NSFC(11801496,11926352)the Fok Ying-Tung Education Foundation(China)the Hubei Key Laboratory of Applied Mathematics(Hubei University).
文摘In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation.
文摘In our preceding paper, we gave some Pinching conditions of sectional curvature and holomorphic sectional curvature for a compact Kaehler submanifold Mn in a locally symmetric Bochner-Kaehler manifold (?)n+p to be totally geodesic. As a continuation, this letter gives the Pinching conditions of Ricci curvature and scalar curvature for Mn in (?)n+p to be totally geodesic. The main results are as follows.
文摘By a locally symmetric Bochner-Kaehler manifold is meant a Kaehler manifold with parallel Riemannian curvature tensor and vanishing Bochner curvature tensor. Complex space forms are special locally symmetric Bochner-Kaehler manifolds.This letter gives some sufficient conditions for a compact Kaehler submanifold in a locally symmetric Bochner-Kaehler manifold to be totally geodesic. Main results are as follows.
文摘This paper gives some sufficient conditions for a compact Kaehler submanifold M<sup>n</sup> in a locally symmetric Bochner-Kaehler manifold <sup>n+p</sup> to be totally geodesic. The conditions are given by inequalities which are established between. the sectional curvature(resp, holomorphic sectional curvature) of M<sup>n</sup> and the Ricci curvature of <sup>n+p</sup>. In particular, similar results in the case where <sup>n+p</sup> is a complex projective spathe are contained.
基金Project supported by the National Natural Science Foundation of China (Nos. 12102043, 12072375U2241240)the Natural Science Foundation of Hunan Province of China (Nos. 2023JJ40698 and 2021JJ40710)。
文摘The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.
文摘In this paper, we deal with isommetric immersions of globally null warped product manifolds into Lorentzian manifolds with constant curvature c in codimension k≥3. Under the assumptions that the globally null warped product manifold has no points with the same constant sectional curvature c as the Lorentzian ambient, we show that such isometric immersion splits into warped product of isometric immersions.
文摘In this paper, the concepts of topological space and differential manifold are introduced, and it is proved that the surface determined by function F (x<sub>2</sub>, x<sub>2</sub>, …, x<sub>t</sub>) of class C<sup>r</sup> in Euelidean R<sup>t</sup> is a differential manifold. Using the intersection of the tangent plane and the hypernormal of the differential manifold to construct the shared master key of participants, an intuitive, secure and complete (t,n)-threshold secret sharing scheme is designed. The paper is proved to be safe, and the probability of successful attack of attackers is only 1/p<sup>t</sup><sup>-1</sup>. When the prime number p is sufficiently large, the probability is almost 0. The results show that this scheme has the characteristics of single-parameter representation of the master key in the geometric method, and is more practical and easy to implement than the Blakley threshold secret sharing scheme.
基金supported partly by the NationalNatural Science Foundation of China(12071437)the Natural Science Foundation from the Education Department of Anhui Province(KJ2020A0044)+2 种基金the Research Fund Project of Chaohu University(KYQD-2023016)the High Level Scientific Research Achievement Award Cultivation Project of Chaohu University(kj20zkjp04)the Key Construction Discipline of Chaohu University(kj22zdjsxk01)。
文摘Let L be the Laplace-Beltrami operator.On an n-dimensional(n≥2),complete,noncompact Riemannian manifold M,we prove that if 0<α<1,s>α/2 and f∈Hs(M),then the fractional Schr?dinger propagator e(it|L|α/2)(f)(x)→f(x)a.e.as t→0.In addition,for when M is a Lie group,the rate of the convergence is also studied.These results are a non-trivial extension of results on Euclidean spaces and compact manifolds.
基金supported by National Magnetic Confined Fusion Energy R&D Program of China(No.2022YFE03030001)National Natural Science Foundation of China(Nos.12275310 and 12175277)+1 种基金the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2021-01)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2021HSCCIP019).
文摘For three-dimensional vector fields,the governing formula of invariant manifolds grown from a hyperbolic cycle is given in cylindrical coordinates.The initial growth directions depend on the Jacobians of Poincarémap on that cycle,for which an evolution formula is deduced to reveal the relationship among Jacobians of different Poincarésections.The evolution formula also applies to cycles in arbitrary finite n-dimensional autonomous continuous-time dynamical systems.Non-Möbiusian/Möbiusian saddle cycles and a dummy X-cycle are constructed analytically as demonstration.A real-world numeric example of analyzing a magnetic field timeslice on EAST is presented.
基金supported by the Basic Ability Improvement Project for Young and Middle-Aged Teachers in Guangxi Universities,Project No.2021KY0792.
文摘The development of thermal stress in the exhaust manifold of a gasoline engine is considered.The problem is addresses in the frame of a combined approach wherefluid and structure are coupled using the GT-POWER and STAR-CCM+software.First,the external characteristic curve of the engine is compared with a one-dimen-sional simulation model,then the parameters of the model are modified until the curve matches the available experimental values.GT-POWER is then used to transfer the inlet boundary data under transient conditions to STAR-CCM+in real-time.The temperature profiles of the inner and outer walls of the exhaust manifold are obtained in this way,together with the thermal stress and thermal deformation of the exhaust manifold itself.Using this information,the original model is improved through the addition of connections.Moreover,the local branch pipes are optimized,leading to significant improvements in terms of thermal stress and thermal deforma-tion of the exhaust manifold(a 7%reduction in the maximum thermal stress).
文摘Let M be a smooth manifold and S ⊆ M a properly embedded smooth submanifold. Suppose that we have a fibre metric on TM|<sub>s</sub> i.e. a positive definite real inner-product on T<sub>p</sub>M for all p ∈ S, which depends smoothly on p ∈ S. The purpose of this article is to figure out that the fibre metric on TM|s</sub> can always be extended to a Riemannian metric on TM from a special perspective.
基金supported by the National Science and Technology Major Project of China(No.2016ZX05028-004-003).
文摘An experimental study was conducted to investigate the properties of stratified regular or wavy two-phase flow in two parallel separators located after a manifold.A total of 103 experiments with various gas and liquid velocity combinations in three inlet pipes were conducted,including 77 groups of outlet pipe resistance symmetry and 26 groups of outlet pipe resistance asymmetry trials.The experimental results have revealed that when the gas-liquid flow rate is low,the degree of uneven splitting is high,and“extreme”conditions are attained.When the superficial gas velocity is greater than that established in the extreme case,the direction of the liquid-phase displacement is reversed,while that of the gas remains unchanged.Thus,the degree of gas phase bias tends to be mitigated with an increase in the gas velocity,while the uneven splitting degree of liquid approaches 10%.Finally,varying the gas-phase outlet pipe resistance is shown to effectively change the gas-liquid two-phase flow distribution.
文摘In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric tensor of the Einstein manifold that represents a physical field in terms of the energy-momentum tensor that characterises the physical field. As illustrations, we first apply the general formulation to represent the perfect fluid as Einstein manifold. However, from the established relation between the metric tensor and the energy-momentum tensor, we show that if the trace of the energy-momentum tensor associated with a physical field is equal to zero then the corresponding physical field cannot be represented as an Einstein manifold. This situation applies to the electromagnetic field since the trace of the energy-momentum of the electromagnetic field vanishes. Nevertheless, we show that a system that consists of the electromagnetic field and non-interacting charged particles can be represented as an Einstein manifold since the trace of the corresponding energy-momentum of the system no longer vanishes. As a further investigation, we show that it is also possible to represent physical fields as maximally symmetric spaces of constant scalar curvature.