Excess minority carrier’s diffusion equation in the base of monofaciale silicon solar cell under frequency modulation of monochromatic illumination is resolved. Using conditions at the base limits involving recombina...Excess minority carrier’s diffusion equation in the base of monofaciale silicon solar cell under frequency modulation of monochromatic illumination is resolved. Using conditions at the base limits involving recombination velocities <i>Sf</i> and <i>Sb</i>, respectively at the junction (n<sup>+</sup>/p) and back surface (p<sup>+</sup>/p), the AC expression of the excess minority carriers’ density <i>δ</i> (<i>T</i>, <i>ω</i>) is determined. The AC density of photocurrent <i>J<sub>ph</sub></i> (<i>T</i>, <i>ω</i>) is represented versus recombination velocity at the junction for different values of the temperature. The expression of the AC back surface recombination velocity <i>Sb</i> of minority carriers is deduced depending on the frequency of modulation, temperature, the electronic parameters (<i>D</i> (<i>ω</i>)) and the thickness of the base. Bode and Nyquist diagrams are used to analyze it.展开更多
文摘Excess minority carrier’s diffusion equation in the base of monofaciale silicon solar cell under frequency modulation of monochromatic illumination is resolved. Using conditions at the base limits involving recombination velocities <i>Sf</i> and <i>Sb</i>, respectively at the junction (n<sup>+</sup>/p) and back surface (p<sup>+</sup>/p), the AC expression of the excess minority carriers’ density <i>δ</i> (<i>T</i>, <i>ω</i>) is determined. The AC density of photocurrent <i>J<sub>ph</sub></i> (<i>T</i>, <i>ω</i>) is represented versus recombination velocity at the junction for different values of the temperature. The expression of the AC back surface recombination velocity <i>Sb</i> of minority carriers is deduced depending on the frequency of modulation, temperature, the electronic parameters (<i>D</i> (<i>ω</i>)) and the thickness of the base. Bode and Nyquist diagrams are used to analyze it.