期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Application of quaternion in visual simulation of rigid body motion
1
作者 HUANG Jin-yang XIN Chang-fan +1 位作者 MA Yun-jian JIA Yi-xian 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第1期32-36,共5页
In recent years,with the extensive applications of high performance computer and the rapid development of the attitude control of the spacecraft,quaternion theory has been widely used.Compared with Euler angles,quater... In recent years,with the extensive applications of high performance computer and the rapid development of the attitude control of the spacecraft,quaternion theory has been widely used.Compared with Euler angles,quaternion not only is simple calculation,but also can avoid the singularity problem of Euler angles,therefore it is widely used in the attitude control of spacecraft.In this paper,Simulink simulation technology is used to establish a rigid attitude simulation model with quaternion method and virtual reality scene by virtual reality modeling language(V RM L)is used to achieve attitude motion visualizationThe simulation results show that the Simulink simulation model can accurately reflect the attitude motion of the rigid body,which is valuable for the research of the attitude control of the spacecraft. 展开更多
关键词 rigid body attitude QUATERNION VISUALIZATION virtual reality
下载PDF
Bionic Attitude Transformation Combined with Closed Motion for a Free Floating Space Robot 被引量:1
2
作者 Zhanpeng Sun Yongjin Lu +1 位作者 Lixian Xu Liang Wang 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期118-126,共9页
In order to realize the small error attitude transformation of a free floating space robot,a new method of three degrees of freedom( DOF) attitude transformation was proposed for the space robot using a bionic joint... In order to realize the small error attitude transformation of a free floating space robot,a new method of three degrees of freedom( DOF) attitude transformation was proposed for the space robot using a bionic joint. A general kinematic model of the space robot was established based on the law of linear and angular momentum conservation. A combinational joint model was established combined with bionic joint and closed motion. The attitude transformation of planar,two DOF and three DOF is analyzed and simulated by the model,and it is verified that the feasibility of attitude transformation in three DOF space. Finally,the specific scheme of disturbance elimination in attitude transformation is presented and simulation results are obtained.Therefore,the range of application field of the bionic joint model has been expanded. 展开更多
关键词 double rigid bodies model bionic mechanism closed motion attitude transformation eliminating disturbance
下载PDF
Hierarchical Control of Ride Height System for Electronically Controlled Air Suspension Based on Variable Structure and Fuzzy Control Theory 被引量:14
3
作者 XU Xing ZHOU Kongkang +2 位作者 ZOU Nannan JIANG Hong CUI Xiaoli 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期945-953,共9页
The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjust... The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjustment during different driving conditions. However, the nonlinearity of the ride height adjusting system and the uneven distribution of payload affect the control accuracy of ride height and the body attitude. Firstly, the three-point measurement system of three height sensors is used to establish the mathematical model of the ride height adjusting system. The decentralized control of ride height and the centralized control of body attitude are presented to design the ride height control system for ECAS. The exact feedback linearization method is adopted for the nonlinear mathematical model of the ride height system. Secondly, according to the hierarchical control theory, the variable structure control (VSC) technique is used to design a controller that is able to adjust the ride height for the quarter-vehicle anywhere, and each quarter-vehicle height control system is independent. Meanwhile, the three-point height signals obtained by three height sensors are tracked to calculate the body pitch and roll attitude over time, and then by calculating the deviation of pitch and roll and its rates, the height control correction is reassigned based on the fuzzy algorithm. Finally, to verify the effectiveness and performance of the proposed combined control strategy, a validating test of ride height control system with and without road disturbance is carried out. Testing results show that the height adjusting time of both lifting and lowering is over 5 s, and the pitch angle and the roll angle of body attitude are less than 0.15°. This research proposes a hierarchical control method that can guarantee the attitude stability, as well as satisfy the ride height tracking system. 展开更多
关键词 electronically controlled air suspension (ECAS) ride height body attitude hierarchical control
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部