The Shengli body-building appliances developed by the Zhejiang Shengli Group Co. in recent years cover ten categories and more than forty items. Shengli has become a "well-known trade mark of Zhejiang Province&qu...The Shengli body-building appliances developed by the Zhejiang Shengli Group Co. in recent years cover ten categories and more than forty items. Shengli has become a "well-known trade mark of Zhejiang Province". The main categories of the Shengli body-building appliances cover a comprehensive training machine, weight-lifting bed, jogging instrument, jogging machine, rowing machine, cycling machine, walking machine, massager and tramping machine. The product series are developing towards intelligent, computerized and multi-functionaltypes. There are both multi-functional展开更多
In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of A...In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of Alzheimer’s disease remains unclear.This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer’s disease,as well as the underlying mechanism.We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer’s disease(Aβ_(1-42)-treated hCMEC/D3 and bEnd.3 cells),as well as in the APP/PS1 mouse model.Additionally,injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits.Interestingly,increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-βin the brains of APP/PS1 mice.This effect may be attributable to inhibition of the expression ofβ-site APP cleaving enzyme 1,which is mediated by nuclear factor-kappa B.Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer’s disease pathogenesis,and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice.These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer’s disease.展开更多
The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed...The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.展开更多
Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzhei...Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.展开更多
文摘The Shengli body-building appliances developed by the Zhejiang Shengli Group Co. in recent years cover ten categories and more than forty items. Shengli has become a "well-known trade mark of Zhejiang Province". The main categories of the Shengli body-building appliances cover a comprehensive training machine, weight-lifting bed, jogging instrument, jogging machine, rowing machine, cycling machine, walking machine, massager and tramping machine. The product series are developing towards intelligent, computerized and multi-functionaltypes. There are both multi-functional
基金supported by STI2030-Major Projects,No.2021ZD 0201801(to JG)Shanxi Province Basic Research Program,No.20210302123429(to QS).
文摘In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of Alzheimer’s disease remains unclear.This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer’s disease,as well as the underlying mechanism.We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer’s disease(Aβ_(1-42)-treated hCMEC/D3 and bEnd.3 cells),as well as in the APP/PS1 mouse model.Additionally,injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits.Interestingly,increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-βin the brains of APP/PS1 mice.This effect may be attributable to inhibition of the expression ofβ-site APP cleaving enzyme 1,which is mediated by nuclear factor-kappa B.Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer’s disease pathogenesis,and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice.These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer’s disease.
基金supported by the National Natural Science Foundation of China,Nos.91849115 and U1904207(to YX),81974211 and 82171247(to CS)Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences,No.2020-PT310-01(to YX).
文摘The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.
基金financially supported by the National Natural Science Foundation of China,No.823 74552 (to WP)the Science and Technology Innovation Program of Hunan Province,No.2022RC1220 (to WP)+1 种基金the Natural Science Foundation of Hunan Province of China,Nos.2020JJ4803 (to WP),2022JJ40723 (to MY)the Scientific Research Launch Project for New Employees of the Second Xiangya Hospital of Central South University (to MY)
文摘Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.