This paper presents a numerical method for simulating the 2-D tidal flow andwater quality with the orthogonal curvilinear coordinates. In order to overcome the computationaldifficulties in natural rivers, such as the ...This paper presents a numerical method for simulating the 2-D tidal flow andwater quality with the orthogonal curvilinear coordinates. In order to overcome the computationaldifficulties in natural rivers, such as the complicated boundary figures, the great disparitybetween length and width of computational domain, etc. , orthogonal boundary-filled grid was used.The irregular domain in physical plane was transformed into a rectangular domain in a transformedplane, and the depth-averaged momentum equations and mass equation were given and discretized basedon the alternating direction implicit finite difference scheme in curvilinear coordinates. Theapplication of the presented method was illustrated by an example of analyzing the Yangtze River inthe vicinity of Nanjing city. A fair agreement between the measured data and computed resultsdemonstrates the validity of the developed method.展开更多
文摘This paper presents a numerical method for simulating the 2-D tidal flow andwater quality with the orthogonal curvilinear coordinates. In order to overcome the computationaldifficulties in natural rivers, such as the complicated boundary figures, the great disparitybetween length and width of computational domain, etc. , orthogonal boundary-filled grid was used.The irregular domain in physical plane was transformed into a rectangular domain in a transformedplane, and the depth-averaged momentum equations and mass equation were given and discretized basedon the alternating direction implicit finite difference scheme in curvilinear coordinates. Theapplication of the presented method was illustrated by an example of analyzing the Yangtze River inthe vicinity of Nanjing city. A fair agreement between the measured data and computed resultsdemonstrates the validity of the developed method.