Considered under their standard form, the fifth-order KdV equations are a sort of reading table on which new prototypes of higher order solitary waves residing there, have been uncovered and revealed to broad daylight...Considered under their standard form, the fifth-order KdV equations are a sort of reading table on which new prototypes of higher order solitary waves residing there, have been uncovered and revealed to broad daylight. The mathematical tool that made it possible to explore and analyze this equation is the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit Bogning' functions. The analytical form of the solutions chosen in this manuscript is particular in the sense that it contains within its bosom, a package of solitary waves made up of three solitons, especially, the bright type soliton, the hybrid soliton and the dark type soliton which we estimate capable in their interactions of generating new hybrid or multi-form solitons. Existence conditions of the obtained solitons have been determined. It emerges that, these existence conditions of the chosen ansatz could open the way to other new varieties of fifth-order KdV equations including to which it will be one of the solutions. Some of the obtained solitons are exact solutions. Intense numerical simulations highlighted numerical stability and confirmed the hybrid character of the obtained solutions. These results will help to model new nonlinear wave phenomena, in plasma media and in fluid dynamics, especially, on the shallow water surface.展开更多
Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-qui...Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-quintic-septic law coupled, with strong dispersions. The equation considered for this purpose is that of non-linear Schrödinger. The solutions are obtained using the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit Bogning’ functions. Some of the obtained solutions show that their existence is due only to the Kerr law nonlinearity presence. Graphical representations plotted have confirmed the hybrid and multi-form character of the obtained dispersive optical solitons. We believe that a good understanding of the hybrid dispersive optical solitons highlighted in the context of this work allows to grasp the physical description of systems whose dynamics are governed by nonlinear Schrödinger equation as studied in this work, allowing thereby a relevant improvement of complex problems encountered in particular in nonliear optaics and in optical fibers.展开更多
The major concern of this work is to propose new prototypes of surface hybrid waves, in particular waves propagating without sprawl or deformation on the surface of a fluid. The model considered for this purpose is th...The major concern of this work is to propose new prototypes of surface hybrid waves, in particular waves propagating without sprawl or deformation on the surface of a fluid. The model considered for this purpose is the modified KdV (Korteweg-de Vries) equation. A peculiarity of the obtained solutions is that they form packages constituted by combinations of waves belonging to the two main families of well-known bright and dark solitary waves. This putting together creates competitions between the different components of the considered packages which, following the values assigned to the parameters of the considered system and in relation to those of the wave parameters, generate hybrid or multi-form structures. The direct method of resolution which made possible the obtained results is that of Bogning-Djeumen Tchaho-Kofane extended to the new implicit Bogning functions. The existence conditions of some solutions are obtained. The numerical simulations carried out with a view to testing the observable and applicable characters of the obtained solutions revealed their stabilities over a relatively long time, and at the same time, confirmed the recommended theoretical forecasts. We are convinced that the solutions proposed as part of this work will make it possible to detect, understand and explain some physical phenomena linked to fluid molecular interactions, former or new, which constantly occur on the fluid surfaces, mainly at the shallow water surface.展开更多
This work proposes the construction of a prototype of pulse-kink hybrid solitary waves with a strong Kink dosage of the Sasa-Satsuma equation which describes the dynamics of the wave propagating in an optical fiber wh...This work proposes the construction of a prototype of pulse-kink hybrid solitary waves with a strong Kink dosage of the Sasa-Satsuma equation which describes the dynamics of the wave propagating in an optical fiber where the stimulated Raman scattering effect is bethinking during modeling. The ultimate goal of this work is to propose a plateful of solutions likely to serve as signals during studies on computer or laboratory propagation studies. The resolution of such an equation is not always the easiest thing, and we used the Bogning-Djeumen Tchaho-Kofané method extended to the implicit functions of Bogning to obtain the results. The flexibility of the iB-functions made it possible to deduce the trigonometric solutions, from the obtained solitary wave solutions with a hyperbolic analytical sequence of the studied Sasa-Satsuma equation. A better appreciation of the nature of the solutions obtained is made through the profiles of some solutions obtained during the different analyses.展开更多
文摘Considered under their standard form, the fifth-order KdV equations are a sort of reading table on which new prototypes of higher order solitary waves residing there, have been uncovered and revealed to broad daylight. The mathematical tool that made it possible to explore and analyze this equation is the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit Bogning' functions. The analytical form of the solutions chosen in this manuscript is particular in the sense that it contains within its bosom, a package of solitary waves made up of three solitons, especially, the bright type soliton, the hybrid soliton and the dark type soliton which we estimate capable in their interactions of generating new hybrid or multi-form solitons. Existence conditions of the obtained solitons have been determined. It emerges that, these existence conditions of the chosen ansatz could open the way to other new varieties of fifth-order KdV equations including to which it will be one of the solutions. Some of the obtained solitons are exact solutions. Intense numerical simulations highlighted numerical stability and confirmed the hybrid character of the obtained solutions. These results will help to model new nonlinear wave phenomena, in plasma media and in fluid dynamics, especially, on the shallow water surface.
文摘Certain hybrid prototypes of dispersive optical solitons that we are looking for can correspond to new or future behaviors, observable or not, developed or will be developed by optical media that present the cubic-quintic-septic law coupled, with strong dispersions. The equation considered for this purpose is that of non-linear Schrödinger. The solutions are obtained using the Bogning-Djeumen Tchaho-Kofané method extended to the new implicit Bogning’ functions. Some of the obtained solutions show that their existence is due only to the Kerr law nonlinearity presence. Graphical representations plotted have confirmed the hybrid and multi-form character of the obtained dispersive optical solitons. We believe that a good understanding of the hybrid dispersive optical solitons highlighted in the context of this work allows to grasp the physical description of systems whose dynamics are governed by nonlinear Schrödinger equation as studied in this work, allowing thereby a relevant improvement of complex problems encountered in particular in nonliear optaics and in optical fibers.
文摘The major concern of this work is to propose new prototypes of surface hybrid waves, in particular waves propagating without sprawl or deformation on the surface of a fluid. The model considered for this purpose is the modified KdV (Korteweg-de Vries) equation. A peculiarity of the obtained solutions is that they form packages constituted by combinations of waves belonging to the two main families of well-known bright and dark solitary waves. This putting together creates competitions between the different components of the considered packages which, following the values assigned to the parameters of the considered system and in relation to those of the wave parameters, generate hybrid or multi-form structures. The direct method of resolution which made possible the obtained results is that of Bogning-Djeumen Tchaho-Kofane extended to the new implicit Bogning functions. The existence conditions of some solutions are obtained. The numerical simulations carried out with a view to testing the observable and applicable characters of the obtained solutions revealed their stabilities over a relatively long time, and at the same time, confirmed the recommended theoretical forecasts. We are convinced that the solutions proposed as part of this work will make it possible to detect, understand and explain some physical phenomena linked to fluid molecular interactions, former or new, which constantly occur on the fluid surfaces, mainly at the shallow water surface.
文摘This work proposes the construction of a prototype of pulse-kink hybrid solitary waves with a strong Kink dosage of the Sasa-Satsuma equation which describes the dynamics of the wave propagating in an optical fiber where the stimulated Raman scattering effect is bethinking during modeling. The ultimate goal of this work is to propose a plateful of solutions likely to serve as signals during studies on computer or laboratory propagation studies. The resolution of such an equation is not always the easiest thing, and we used the Bogning-Djeumen Tchaho-Kofané method extended to the implicit functions of Bogning to obtain the results. The flexibility of the iB-functions made it possible to deduce the trigonometric solutions, from the obtained solitary wave solutions with a hyperbolic analytical sequence of the studied Sasa-Satsuma equation. A better appreciation of the nature of the solutions obtained is made through the profiles of some solutions obtained during the different analyses.