The basic equations of the non-relativistic quantum mechanics with trajectories and quantum hydrodynamics are extended to the relativistic domain. This is achieved by using a Schr<span style="white-space:nowra...The basic equations of the non-relativistic quantum mechanics with trajectories and quantum hydrodynamics are extended to the relativistic domain. This is achieved by using a Schr<span style="white-space:nowrap;">?</span>dinger-like equation, which describes a particle with mass and spin-0 and with the correct relativistic relation between its linear momentum and kinetic energy. Some simple but instructive free particle examples are discussed.展开更多
文摘The basic equations of the non-relativistic quantum mechanics with trajectories and quantum hydrodynamics are extended to the relativistic domain. This is achieved by using a Schr<span style="white-space:nowrap;">?</span>dinger-like equation, which describes a particle with mass and spin-0 and with the correct relativistic relation between its linear momentum and kinetic energy. Some simple but instructive free particle examples are discussed.