Bohr's type inequalities are studied in this paper: if f is a holomorphic mapping from the unit ball B^n to B^n, f(0)=p, then we have sum from k=0 to∞|Dφ_P(P)[D^kf(0)(z^k)]|/k!||Dφ_P(P)||<1 for|z|<max{1/2+|...Bohr's type inequalities are studied in this paper: if f is a holomorphic mapping from the unit ball B^n to B^n, f(0)=p, then we have sum from k=0 to∞|Dφ_P(P)[D^kf(0)(z^k)]|/k!||Dφ_P(P)||<1 for|z|<max{1/2+|P|,(1-|p|)/2^(1/2)andφ_P∈Aut(B^n) such thatφ_(p)=0. As corollaries of the above estimate, we obtain some sharp Bohr's type modulus inequalities. In particular, when n=1 and |P|→1, then our theorem reduces to a classical result of Bohr.展开更多
Bohr assumed a quantum condition when deriving the energy levels of a hydrogen atom. This famous quantum condition was not derived logically, but it beautifully explained the energy levels of the hydrogen atom. Theref...Bohr assumed a quantum condition when deriving the energy levels of a hydrogen atom. This famous quantum condition was not derived logically, but it beautifully explained the energy levels of the hydrogen atom. Therefore, Bohr’s quantum condition was accepted by physicists. However, the energy levels predicted by the eventually completed quantum mechanics do not match perfectly with the predictions of Bohr. For this reason, it cannot be said that Bohr’s quantum condition is a perfectly correct assumption. Since the mass of an electron which moves inside a hydrogen atom varies, Bohr’s quantum condition must be revised. However, the newly derived relativistic quantum condition is too complex to be assumed at the beginning. The velocity of an electron in a hydrogen atom is known as the Bohr velocity. This velocity can be derived from the formula for energy levels derived by Bohr. The velocity <em>v </em>of an electron including the principal quantum number <em>n</em> is given by <em>αc</em>/<em>n</em>. This paper elucidates the fact that this formula is built into Bohr’s quantum condition. It is also concluded in this paper that it is precisely this velocity formula that is the quantum condition that should have been assumed in the first place by Bohr. From Bohr’s quantum condition, it is impossible to derive the relativistic energy levels of a hydrogen atom, but they can be derived from the new quantum condition. This paper proposes raising the status of the previously-known Bohr velocity formula.展开更多
In a previous, primary treatise of the author the mathematical description of electron trajectories in the excited states of the H-atom could be demonstrated, starting from Bohr’s original model but modifying it thre...In a previous, primary treatise of the author the mathematical description of electron trajectories in the excited states of the H-atom could be demonstrated, starting from Bohr’s original model but modifying it three dimensionally. In a subsequent treatise, Bohr’s theorem of an unalterable angular momentum h/2π, determining the ground state of the H-atom, was revealed as an inducement by the—unalterable—electron spin. Starting from this presumption, a model of the H2-molecule could be created which exhibits well-defined electron trajectories, and which enabled computing the bond length precisely. In the present treatise, Bohr’s theorem is adapted to the atom models of helium and of neon. But while this was feasible exactly in the case of helium, the neon atom turned out to be too complex for a mathematical modelling. Nevertheless, a rough ball-and-stick model can be presented, assuming electron rings instead of electron clouds, which in the outer shell are orientated as a tetrahedron. It entails the principal statement that the neon atom does not represent a static construction with constant electron distances and velocities, but a pulsating dynamic one with permanently changing internal distances. Thus, the helium atom marks the limit for precisely describing an atom, whereby at and under this limit such a precise description is feasible, being also demonstrated in the author’s previous work. This contradicts the conventional quantum mechanical theory which claims that such a—locally and temporally—precise description of any atom or molecule structure is generally not possible, also not for the H2-molecule, and not even for the H-atom.展开更多
Proceeding from the double-cone model of Helium, based on Bohr’s theorem and recently published in?[13], a spherical modification could be made by introducing a second electron rotation which exhibits a rotation axis...Proceeding from the double-cone model of Helium, based on Bohr’s theorem and recently published in?[13], a spherical modification could be made by introducing a second electron rotation which exhibits a rotation axis perpendicular to the first one. Thereby, each rotation is induced by the spin of one electron. Thus the trajectory of each electron represents the superposition of two separate orbits, while each electron is always positioned opposite to the other one. Both electron velocities are equal and constant, due to their mutual coupling. The 3D electron orbits could be 2D-graphed by separately projecting them on the x/z-plane of a Cartesian coordinate system, and by plotting the evaluated x-, y- and z-values versus the rotation angle. Due to the decreased electron velocity, the resulting radius is twice the size of the one in the double-cone model. Even if distinct evidence is not feasible, e.g. by means of X-ray crystallographic data, this modified model appears to be the more plausible one, due to its higher cloud coverage, and since it comes closer to Kimball’s charge cloud model.展开更多
A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that proces...A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that process. These lower bounds are much similar to the interval limits deduced on both the experimental and theoretical footing in the era when the Heisenberg uncertainty principle has been developed. In effect of the bounds existence, a maximal nuclear charge Ze acceptable for the Bohr atomic ion could be calculated. In the next step the velocity of electron transitions between the Bohr orbits is found to be close to the speed of light. This result provides us with the energy spectrum of transitions similar to that obtained in the Bohr’s model. A momentary force acting on the electrons in course of their transitions is estimated to be by many orders larger than a steady electrostatic force existent between the atomic electron and the nucleus.展开更多
Einstein’s energy-momentum relationship is a formula that typifies the special theory of relativity (STR). According to the STR, when the velocity of a moving body increases, so does the mass of the body. The STR ass...Einstein’s energy-momentum relationship is a formula that typifies the special theory of relativity (STR). According to the STR, when the velocity of a moving body increases, so does the mass of the body. The STR asserts that the mass of a body depends of the velocity at which the body moves. However, when energy is imparted to a body, this relation holds because kinetic energy increases. When the motion of an electron in an atom is discussed at the level of classical quantum theory, the kinetic energy of the electron is increased due to the emission of energy. At this time, the relativistic energy of the electron decreases, and the mass of the electron also decreases. The STR is not applicable to an electron in an atom. This paper derives an energy-momentum relationship applicable to an electron in an atom. The formula which determines the mass of an electron in an atom is also derived by using that relationship.展开更多
Einstein’s energy-momentum relationship, which holds in an isolated system in free space, contains two formulas for relativistic kinetic energy. Einstein’s relationship is not applicable in a hydrogen atom, where po...Einstein’s energy-momentum relationship, which holds in an isolated system in free space, contains two formulas for relativistic kinetic energy. Einstein’s relationship is not applicable in a hydrogen atom, where potential energy is present. However, a relationship similar to that can be derived. That derived relationship also contains two formulas, for the relativistic kinetic energy of an electron in a hydrogen atom. Furthermore, it is possible to derive a third formula for the relativistic kinetic energy of an electron from that relationship. Next, the paper looks at the fact that the electron has a wave nature. Five more formulas can be derived based on considerations relating to the phase velocity and group velocity of the electron. This paper presents eight formulas for the relativistic kinetic energy of an electron in a hydrogen atom.展开更多
The quantum mechanics of bound states with discrete energy levels is well understood. The quantum mechanics of scattering processes is also well understood. However, the quantum mechanics of moving bound states is sti...The quantum mechanics of bound states with discrete energy levels is well understood. The quantum mechanics of scattering processes is also well understood. However, the quantum mechanics of moving bound states is still debatable. When it is at rest, the space-like separation between the constituent particles is the primary variable. When the bound state moves, this space-like separation picks up the time-like separation. The time-separation is not a measurable variable in the present form of quantum mechanics. The only way to deal with this un-observable variable is to treat it statistically. This leads to rise of the statistical variables such entropy and temperature. Paul A. M. Dirac made efforts to construct bound-state wave functions in Einstein’s Lorentz-covariant world. In 1927, he noted that the c-number time-energy relation should be incorporated in the relativistic world. In 1945, he constructed four-dimensional oscillator wave functions with one time coordinate in addition to the three-dimensional space. In 1949, Dirac introduced the light-cone coordinate system for Lorentz transformations. It is then possible to integrate these contributions made by Dirac to construct the Lorentz-covariant harmonic oscillator wave functions. This oscillator system can explain the proton as a bound state of the quarks when it is at rest, and explain the Feynman’s parton picture when it moves with a speed close to that of light. While the un-measurable time-like separation becomes equal to the space-like separation at this speed, the statistical variables become prominent. The entropy and the temperature of this covariant harmonic oscillator are calculated. It is shown that they rise rapidly as the proton speed approaches that of light.展开更多
进入21世纪以来,城市韧性研究日益兴起,理论累积也达到了一定程度,现如何开展基于生态实践智慧的城市韧性研究,使其从理论探索走向实践研究显得尤为重要。从生态实践智慧的首选研究范式--巴斯德范式的视角出发,通过Web of Science和中...进入21世纪以来,城市韧性研究日益兴起,理论累积也达到了一定程度,现如何开展基于生态实践智慧的城市韧性研究,使其从理论探索走向实践研究显得尤为重要。从生态实践智慧的首选研究范式--巴斯德范式的视角出发,通过Web of Science和中国知网两大平台检索城市韧性相关中英文文献,对文献进行研究范式分类统计分析,探讨了城市韧性研究中玻尔范式盛行的现象和原因,并提出了城市韧性巴斯德范式研究的建议。展开更多
基金Supported by the NNSF of China(10571164)Supported by Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP)(2050358052)Supported by the NSF of Zhejiang Province(Y606197)
文摘Bohr's type inequalities are studied in this paper: if f is a holomorphic mapping from the unit ball B^n to B^n, f(0)=p, then we have sum from k=0 to∞|Dφ_P(P)[D^kf(0)(z^k)]|/k!||Dφ_P(P)||<1 for|z|<max{1/2+|P|,(1-|p|)/2^(1/2)andφ_P∈Aut(B^n) such thatφ_(p)=0. As corollaries of the above estimate, we obtain some sharp Bohr's type modulus inequalities. In particular, when n=1 and |P|→1, then our theorem reduces to a classical result of Bohr.
文摘Bohr assumed a quantum condition when deriving the energy levels of a hydrogen atom. This famous quantum condition was not derived logically, but it beautifully explained the energy levels of the hydrogen atom. Therefore, Bohr’s quantum condition was accepted by physicists. However, the energy levels predicted by the eventually completed quantum mechanics do not match perfectly with the predictions of Bohr. For this reason, it cannot be said that Bohr’s quantum condition is a perfectly correct assumption. Since the mass of an electron which moves inside a hydrogen atom varies, Bohr’s quantum condition must be revised. However, the newly derived relativistic quantum condition is too complex to be assumed at the beginning. The velocity of an electron in a hydrogen atom is known as the Bohr velocity. This velocity can be derived from the formula for energy levels derived by Bohr. The velocity <em>v </em>of an electron including the principal quantum number <em>n</em> is given by <em>αc</em>/<em>n</em>. This paper elucidates the fact that this formula is built into Bohr’s quantum condition. It is also concluded in this paper that it is precisely this velocity formula that is the quantum condition that should have been assumed in the first place by Bohr. From Bohr’s quantum condition, it is impossible to derive the relativistic energy levels of a hydrogen atom, but they can be derived from the new quantum condition. This paper proposes raising the status of the previously-known Bohr velocity formula.
文摘In a previous, primary treatise of the author the mathematical description of electron trajectories in the excited states of the H-atom could be demonstrated, starting from Bohr’s original model but modifying it three dimensionally. In a subsequent treatise, Bohr’s theorem of an unalterable angular momentum h/2π, determining the ground state of the H-atom, was revealed as an inducement by the—unalterable—electron spin. Starting from this presumption, a model of the H2-molecule could be created which exhibits well-defined electron trajectories, and which enabled computing the bond length precisely. In the present treatise, Bohr’s theorem is adapted to the atom models of helium and of neon. But while this was feasible exactly in the case of helium, the neon atom turned out to be too complex for a mathematical modelling. Nevertheless, a rough ball-and-stick model can be presented, assuming electron rings instead of electron clouds, which in the outer shell are orientated as a tetrahedron. It entails the principal statement that the neon atom does not represent a static construction with constant electron distances and velocities, but a pulsating dynamic one with permanently changing internal distances. Thus, the helium atom marks the limit for precisely describing an atom, whereby at and under this limit such a precise description is feasible, being also demonstrated in the author’s previous work. This contradicts the conventional quantum mechanical theory which claims that such a—locally and temporally—precise description of any atom or molecule structure is generally not possible, also not for the H2-molecule, and not even for the H-atom.
文摘Proceeding from the double-cone model of Helium, based on Bohr’s theorem and recently published in?[13], a spherical modification could be made by introducing a second electron rotation which exhibits a rotation axis perpendicular to the first one. Thereby, each rotation is induced by the spin of one electron. Thus the trajectory of each electron represents the superposition of two separate orbits, while each electron is always positioned opposite to the other one. Both electron velocities are equal and constant, due to their mutual coupling. The 3D electron orbits could be 2D-graphed by separately projecting them on the x/z-plane of a Cartesian coordinate system, and by plotting the evaluated x-, y- and z-values versus the rotation angle. Due to the decreased electron velocity, the resulting radius is twice the size of the one in the double-cone model. Even if distinct evidence is not feasible, e.g. by means of X-ray crystallographic data, this modified model appears to be the more plausible one, due to its higher cloud coverage, and since it comes closer to Kimball’s charge cloud model.
文摘A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that process. These lower bounds are much similar to the interval limits deduced on both the experimental and theoretical footing in the era when the Heisenberg uncertainty principle has been developed. In effect of the bounds existence, a maximal nuclear charge Ze acceptable for the Bohr atomic ion could be calculated. In the next step the velocity of electron transitions between the Bohr orbits is found to be close to the speed of light. This result provides us with the energy spectrum of transitions similar to that obtained in the Bohr’s model. A momentary force acting on the electrons in course of their transitions is estimated to be by many orders larger than a steady electrostatic force existent between the atomic electron and the nucleus.
文摘Einstein’s energy-momentum relationship is a formula that typifies the special theory of relativity (STR). According to the STR, when the velocity of a moving body increases, so does the mass of the body. The STR asserts that the mass of a body depends of the velocity at which the body moves. However, when energy is imparted to a body, this relation holds because kinetic energy increases. When the motion of an electron in an atom is discussed at the level of classical quantum theory, the kinetic energy of the electron is increased due to the emission of energy. At this time, the relativistic energy of the electron decreases, and the mass of the electron also decreases. The STR is not applicable to an electron in an atom. This paper derives an energy-momentum relationship applicable to an electron in an atom. The formula which determines the mass of an electron in an atom is also derived by using that relationship.
文摘Einstein’s energy-momentum relationship, which holds in an isolated system in free space, contains two formulas for relativistic kinetic energy. Einstein’s relationship is not applicable in a hydrogen atom, where potential energy is present. However, a relationship similar to that can be derived. That derived relationship also contains two formulas, for the relativistic kinetic energy of an electron in a hydrogen atom. Furthermore, it is possible to derive a third formula for the relativistic kinetic energy of an electron from that relationship. Next, the paper looks at the fact that the electron has a wave nature. Five more formulas can be derived based on considerations relating to the phase velocity and group velocity of the electron. This paper presents eight formulas for the relativistic kinetic energy of an electron in a hydrogen atom.
文摘The quantum mechanics of bound states with discrete energy levels is well understood. The quantum mechanics of scattering processes is also well understood. However, the quantum mechanics of moving bound states is still debatable. When it is at rest, the space-like separation between the constituent particles is the primary variable. When the bound state moves, this space-like separation picks up the time-like separation. The time-separation is not a measurable variable in the present form of quantum mechanics. The only way to deal with this un-observable variable is to treat it statistically. This leads to rise of the statistical variables such entropy and temperature. Paul A. M. Dirac made efforts to construct bound-state wave functions in Einstein’s Lorentz-covariant world. In 1927, he noted that the c-number time-energy relation should be incorporated in the relativistic world. In 1945, he constructed four-dimensional oscillator wave functions with one time coordinate in addition to the three-dimensional space. In 1949, Dirac introduced the light-cone coordinate system for Lorentz transformations. It is then possible to integrate these contributions made by Dirac to construct the Lorentz-covariant harmonic oscillator wave functions. This oscillator system can explain the proton as a bound state of the quarks when it is at rest, and explain the Feynman’s parton picture when it moves with a speed close to that of light. While the un-measurable time-like separation becomes equal to the space-like separation at this speed, the statistical variables become prominent. The entropy and the temperature of this covariant harmonic oscillator are calculated. It is shown that they rise rapidly as the proton speed approaches that of light.
文摘进入21世纪以来,城市韧性研究日益兴起,理论累积也达到了一定程度,现如何开展基于生态实践智慧的城市韧性研究,使其从理论探索走向实践研究显得尤为重要。从生态实践智慧的首选研究范式--巴斯德范式的视角出发,通过Web of Science和中国知网两大平台检索城市韧性相关中英文文献,对文献进行研究范式分类统计分析,探讨了城市韧性研究中玻尔范式盛行的现象和原因,并提出了城市韧性巴斯德范式研究的建议。