Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamic...Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.展开更多
With the help of the symbolic computation system Maple, the Riccati equation mapping approach and a linear variable separation approach, a new family of complex solutions for the (2+ 1)-dimensional Boiti-Leon-Pempi...With the help of the symbolic computation system Maple, the Riccati equation mapping approach and a linear variable separation approach, a new family of complex solutions for the (2+ 1)-dimensional Boiti-Leon-Pempinelli system (BLP) is derived. Based on the derived solitary wave solution, some novel complex wave localized excitations are obtained.展开更多
The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations.In this paper,we use a new form of variable separation to study novel soliton molecules and thei...The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations.In this paper,we use a new form of variable separation to study novel soliton molecules and their interactions in(2+1)-dimensional potential Boiti–Leon-Manna–Pempinelli equation.Dromion molecules,ring molecules,lump molecules,multi-instantaneous molecules,and their interactions are obtained.Then we draw corresponding images with maple software to study their dynamic behavior.展开更多
In this paper, we consider (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Based on the bilinear form, we derive exact solutions of (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation by using th...In this paper, we consider (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Based on the bilinear form, we derive exact solutions of (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation by using the Wronskian technique, which include rational solutions, soliton solutions, positons and negatons.展开更多
The formal series symmetry approach (FSSA), a quite powerful and straightforward method to establish infinitely many generalized symmetries of classical integrable systems, has been successfully extended in the supe...The formal series symmetry approach (FSSA), a quite powerful and straightforward method to establish infinitely many generalized symmetries of classical integrable systems, has been successfully extended in the supersymmetric framework to explore series of infinitely many generalized symmetries for supersymmetric systems. Taking the N = 1 supersymmetric Boiti-Leon-Manna-Pempinelli system as a concrete example, it is shown that the application of the extended FSSA to this supersymmetric system leads to a set of infinitely f(t). Some interesting special cases of symmetry algebras are commutativity of higher order generalized symmetries. many generalized symmetries with an arbitrary function presented, including a limit case f(t) = 1 related to the展开更多
基金Supported by the National Natural Science Foundation of China(12275172)。
文摘Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.
基金Project supported by the National Natural Science Foundation of China(Grant No.11375079)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.Y6100257 and Y6110140)
文摘With the help of the symbolic computation system Maple, the Riccati equation mapping approach and a linear variable separation approach, a new family of complex solutions for the (2+ 1)-dimensional Boiti-Leon-Pempinelli system (BLP) is derived. Based on the derived solitary wave solution, some novel complex wave localized excitations are obtained.
基金the National Natural Science Foundation of China(Grant Nos.11371086,11671258,and 11975145)the Fund of Science and Technology Commission of Shanghai Municipality(Grant No.13ZR1400100)。
文摘The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations.In this paper,we use a new form of variable separation to study novel soliton molecules and their interactions in(2+1)-dimensional potential Boiti–Leon-Manna–Pempinelli equation.Dromion molecules,ring molecules,lump molecules,multi-instantaneous molecules,and their interactions are obtained.Then we draw corresponding images with maple software to study their dynamic behavior.
文摘In this paper, we consider (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Based on the bilinear form, we derive exact solutions of (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli (BLMP) equation by using the Wronskian technique, which include rational solutions, soliton solutions, positons and negatons.
基金supported by the National Natural Science Foundation of China(Grant Nos.11275123,11175092,11475052,and 11435005)the Shanghai Knowledge Service Platform for Trustworthy Internet of Things,China(Grant No.ZF1213)the Talent Fund and K C Wong Magna Fund in Ningbo University,China
文摘The formal series symmetry approach (FSSA), a quite powerful and straightforward method to establish infinitely many generalized symmetries of classical integrable systems, has been successfully extended in the supersymmetric framework to explore series of infinitely many generalized symmetries for supersymmetric systems. Taking the N = 1 supersymmetric Boiti-Leon-Manna-Pempinelli system as a concrete example, it is shown that the application of the extended FSSA to this supersymmetric system leads to a set of infinitely f(t). Some interesting special cases of symmetry algebras are commutativity of higher order generalized symmetries. many generalized symmetries with an arbitrary function presented, including a limit case f(t) = 1 related to the
基金"973" The National Key Basic Research Project of China(2004CB318000)Fundamental Research Funds for the Central Universities and Science Foundation of Dalian University of Technology(No.SFDUT200808)~~