Bolometers are considered to be a standard diagnostic for fusion experiments, mainly for measuring the total radiated power and spatial profiles of the local radiation power density. New design and the first result ar...Bolometers are considered to be a standard diagnostic for fusion experiments, mainly for measuring the total radiated power and spatial profiles of the local radiation power density. New design and the first result are presented from three AXUV arrays with high temporal resolution installed on the HL-2A tokamak. This high temporal resolution allows the study of transient radiative phenomena.展开更多
The main characteristics of millimeter-wave(MM-wave)image detector were simulated by means of accurate numerical modeling of thermophysical processes in a metamaterial MM-to-IR converter.The converter represents a mul...The main characteristics of millimeter-wave(MM-wave)image detector were simulated by means of accurate numerical modeling of thermophysical processes in a metamaterial MM-to-IR converter.The converter represents a multilayer structure consisting of an ultra thin resonant metamaterial absorber and a perfect emissive layer.The absorber consists of a dielectric self-supporting film that is metallized from both sides.A micropattern is fabricated from one side.Resonant absorption of the MM waves induces the converter heating that yields enhancement of IR emission from the emissive layer.IR emission is detected by IR camera.In this contribution an accurate numerical model for simulation of the thermal processes in the converter structure was created by using COMSOL Multiphysics software.The simulation results are in a good agreement with experimental results that validates the model.The simulation shows that the real-time operation is provided for the converter thickness less than 3µm and time response can be improved by decreasing of the converter thickness.The energy conversion efficiency of MM waves into IR radiation is over 80%.The converter temperature increase is a linear function of a MM-wave radiation power within three orders of the dynamic range.The blooming effect and ways of its reducing are also discussed.The model allows us to choose the ways of converter structure optimization and improvement of image detector parameters.展开更多
文摘Bolometers are considered to be a standard diagnostic for fusion experiments, mainly for measuring the total radiated power and spatial profiles of the local radiation power density. New design and the first result are presented from three AXUV arrays with high temporal resolution installed on the HL-2A tokamak. This high temporal resolution allows the study of transient radiative phenomena.
文摘The main characteristics of millimeter-wave(MM-wave)image detector were simulated by means of accurate numerical modeling of thermophysical processes in a metamaterial MM-to-IR converter.The converter represents a multilayer structure consisting of an ultra thin resonant metamaterial absorber and a perfect emissive layer.The absorber consists of a dielectric self-supporting film that is metallized from both sides.A micropattern is fabricated from one side.Resonant absorption of the MM waves induces the converter heating that yields enhancement of IR emission from the emissive layer.IR emission is detected by IR camera.In this contribution an accurate numerical model for simulation of the thermal processes in the converter structure was created by using COMSOL Multiphysics software.The simulation results are in a good agreement with experimental results that validates the model.The simulation shows that the real-time operation is provided for the converter thickness less than 3µm and time response can be improved by decreasing of the converter thickness.The energy conversion efficiency of MM waves into IR radiation is over 80%.The converter temperature increase is a linear function of a MM-wave radiation power within three orders of the dynamic range.The blooming effect and ways of its reducing are also discussed.The model allows us to choose the ways of converter structure optimization and improvement of image detector parameters.