Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn ...Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into d-MnO_(2) nanosheets irreversibly,thus results in a change of the reaction mechanism with Kþion intercalation.However,the low capacity has greatly limited its practical application.Herein,we found that the tetrahedrally-coordinated Co_(2) þions were leached when MnCo_(2)_(4) was equilibrated in 1 mol L^(-1) HCl solution,leading to the formation of layered CoOOH on MnCo_(2)_(4) surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free Co_(6) octahedra.The as-formed CoOOH is stable upon cycling in alkaline electrolyte,exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution,thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion.In general,our work not only offers a feasible approach to deliberate modification of MnCo_(2)_(4)'s surface structure,but also provides an in-depth understanding of its charge storage mechanism,which enables rational design of the spinel oxides with promising charge storage properties.展开更多
For many years, a Lorentz factor of L = 1/3 has been used to describe the local electric field in thin amorphous dielectrics. However, the exact meaning of thin has been unclear. The local electric field E<sub>l...For many years, a Lorentz factor of L = 1/3 has been used to describe the local electric field in thin amorphous dielectrics. However, the exact meaning of thin has been unclear. The local electric field E<sub>loc</sub> modeling presented in this work indicates that L = 1/3 is indeed valid for very thin solid dielectrics (t<sub>diel</sub> ≤ 20 monolayers) but significant deviations from L = 1/3 start to occur for thicker dielectrics. For example, L ≈ 2/3 for dielectric thicknesses of t<sub>diel</sub> = 50 monolayers and increases to L ≈ 1 for dielectric thicknesses t<sub>diel</sub> > 200 monolayers. The increase in L with t<sub>diel</sub> means that the local electric fields are significantly higher in thicker dielectrics and explains why the breakdown strength E<sub>bd</sub> of solid polar dielectrics generally reduces with dielectric thickness t<sub>diel</sub>. For example, E<sub>bd</sub> for SiO<sub>2</sub> reduces from approximately E<sub>bd</sub> ≈ 25 MV/cm at t<sub>diel</sub> = 2 nm to E<sub>bd</sub> ≈ 10 MV/cm at t<sub>diel</sub> = 50 nm. However, while E<sub>bd</sub> for SiO<sub>2</sub> reduces with t<sub>diel</sub>, all SiO<sub>2</sub> thicknesses are found to breakdown at approximately the same local electric field (E<sub>loc</sub>)<sub>bd</sub> ≈ 40 MV/cm. This corresponds to a coordination bond strength of 2.7 eV for the silicon-ion to transition from four-fold to three-fold coordination in the tetrahedral structure.展开更多
It is well known that work done on a material by conservative forces (electrical, mechanical, chemical) will increase the Gibbs Potential of the material. The increase in Gibbs Potential can be stored in the material ...It is well known that work done on a material by conservative forces (electrical, mechanical, chemical) will increase the Gibbs Potential of the material. The increase in Gibbs Potential can be stored in the material and is free/available to do work at some later time. However, it will be shown in this paper that while in this state of higher Gibbs potential, the material is metastable and the material will degrade spontaneously/naturally with time in an effort to reach a lower Gibbs Potential. A generalized Gibbs Potential Model is developed herein to better understand its impact on a materials degradation rate. Special attention will be given to dielectrics degradation.展开更多
基金supported by the National Key Research and Development Program of China(2022YFE0206300)the National Natural Science Foundation of China(22209047,U21A2081,22075074)+2 种基金Natural Science Foundation of Hunan Province(2020JJ5035)Hunan Provincial Department of Education Outstanding Youth Project(23B0037)Macao Science and Technology Development Fund(Macao SAR,FDCT-0096/2020/A2).
文摘Manganese cobaltite(MnCo_(2)_(4))is a promising electrode material because of its attractive redox chemistry and excellent charge storage capability.Our previous work demonstrated that the octahedrally-coordinated Mn are prone to react with the hydroxyl ions in alkaline electrolyte upon electrochemical cycling and separates on the surface of spinel to reconstruct into d-MnO_(2) nanosheets irreversibly,thus results in a change of the reaction mechanism with Kþion intercalation.However,the low capacity has greatly limited its practical application.Herein,we found that the tetrahedrally-coordinated Co_(2) þions were leached when MnCo_(2)_(4) was equilibrated in 1 mol L^(-1) HCl solution,leading to the formation of layered CoOOH on MnCo_(2)_(4) surface which is originated from the covalency competition induced selective breakage of the CoT–O bond in CoT–O–CoO and subsequent rearrangement of free Co_(6) octahedra.The as-formed CoOOH is stable upon cycling in alkaline electrolyte,exhibits conversion reaction mechanism with facile proton diffusion and is free of massive structural evolution,thus enables utilization of the bulk electrode material and realizes enhanced specific capacity as well as facilitated charge transfer and ion diffusion.In general,our work not only offers a feasible approach to deliberate modification of MnCo_(2)_(4)'s surface structure,but also provides an in-depth understanding of its charge storage mechanism,which enables rational design of the spinel oxides with promising charge storage properties.
文摘For many years, a Lorentz factor of L = 1/3 has been used to describe the local electric field in thin amorphous dielectrics. However, the exact meaning of thin has been unclear. The local electric field E<sub>loc</sub> modeling presented in this work indicates that L = 1/3 is indeed valid for very thin solid dielectrics (t<sub>diel</sub> ≤ 20 monolayers) but significant deviations from L = 1/3 start to occur for thicker dielectrics. For example, L ≈ 2/3 for dielectric thicknesses of t<sub>diel</sub> = 50 monolayers and increases to L ≈ 1 for dielectric thicknesses t<sub>diel</sub> > 200 monolayers. The increase in L with t<sub>diel</sub> means that the local electric fields are significantly higher in thicker dielectrics and explains why the breakdown strength E<sub>bd</sub> of solid polar dielectrics generally reduces with dielectric thickness t<sub>diel</sub>. For example, E<sub>bd</sub> for SiO<sub>2</sub> reduces from approximately E<sub>bd</sub> ≈ 25 MV/cm at t<sub>diel</sub> = 2 nm to E<sub>bd</sub> ≈ 10 MV/cm at t<sub>diel</sub> = 50 nm. However, while E<sub>bd</sub> for SiO<sub>2</sub> reduces with t<sub>diel</sub>, all SiO<sub>2</sub> thicknesses are found to breakdown at approximately the same local electric field (E<sub>loc</sub>)<sub>bd</sub> ≈ 40 MV/cm. This corresponds to a coordination bond strength of 2.7 eV for the silicon-ion to transition from four-fold to three-fold coordination in the tetrahedral structure.
文摘It is well known that work done on a material by conservative forces (electrical, mechanical, chemical) will increase the Gibbs Potential of the material. The increase in Gibbs Potential can be stored in the material and is free/available to do work at some later time. However, it will be shown in this paper that while in this state of higher Gibbs potential, the material is metastable and the material will degrade spontaneously/naturally with time in an effort to reach a lower Gibbs Potential. A generalized Gibbs Potential Model is developed herein to better understand its impact on a materials degradation rate. Special attention will be given to dielectrics degradation.