A dynamic simulation method for non-linear systems based on genetic programming (GP) and bond graphs (BG) was developed to improve the design of nonlinear multi-domain energy conversion systems. The genetic operat...A dynamic simulation method for non-linear systems based on genetic programming (GP) and bond graphs (BG) was developed to improve the design of nonlinear multi-domain energy conversion systems. The genetic operators enable the embryo bond graph to evolve towards the target graph according to the fitness function. Better simulation requires analysis of the optimization of the eigenvalue and the filter circuit evolution. The open topological design and optimized convergence for the operation, but also the design of nonlinear multi-domain systems. space search ability of this method not only gives a more reduces the generation time for the new circuit graph for展开更多
Currently,wire bonding is the most popular first-level interconnection technology used between the die and package terminals,but even with its long-term and excessive usage,the mechanism of wire bonding has not been c...Currently,wire bonding is the most popular first-level interconnection technology used between the die and package terminals,but even with its long-term and excessive usage,the mechanism of wire bonding has not been completely evaluated.Therefore,fundamental research is still needed.In this study,the mechanism of microweld formation and breakage during Cu-Cu wire bonding was investigated by using molecular dynamics simulation.The contact model for the nanoindentation process between the wire and substrate was developed to simulate the contact process of the Cu wire and Cu substrate.Elastic contact and plastic instability were investigated through the loading and unloading processes.Moreover,the evolution of the indentation morphology and distributions of the atomic stress were also investigated.It was shown that the loading and unloading curves do not coincide,and the unloading curve exhibited hysteresis.For the substrate,in the loading process,the main force changed from attractive to repulsive.The maximum von Mises stress increased and shifted from the center toward the edge of the contact area.During the unloading process,the main force changed from repulsive to attractive.The Mises stress reduced first and then increased.Stress concentration occurs around dislocations in the middle area of the Cu wire.展开更多
A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of th...A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of the bimetal were investigated.A special concentric groove pattern was machined on the top surface of the insert(squeeze cast Al-4.5 wt.%Cu) and its effects on heat transfer,solidification and distribution of generated stresses along the interface region of the bimetal components were simulated using ProCAST and ANSYS softwares and experimentally verified. Simulation results indicated complete melting of the tips of the surface grooves and local generation of large stress gradient fields along the interface. These are believed to result in rupture of the insert interfacial aluminum oxide layer facilitating diffusion bonding of the bimetal components. Microstructural evaluations confirmed formation of an evident transition zone along the interface region of the bimetal. Average thickness of the transition zone and tensile strength of the bimetal were significantly increased to about 375 μm and 54 MPa, respectively, by applying the surface pattern.The proposed method is an affordable and promising approach for compound squeeze casting of Al-Al macrocomposite bimetals without resort to any prior cost and time intensive chemical or coating treatments of the solid insert.展开更多
The research on numerical simulation for combinative process of SPF/DB is carried out in this paper. The contacting problem of sheets is analyzed by using the penalty method. In order to solve the contact problem of d...The research on numerical simulation for combinative process of SPF/DB is carried out in this paper. The contacting problem of sheets is analyzed by using the penalty method. In order to solve the contact problem of different parts of the sheet, a new algorithm for contacting judgment is proposed. According to the relation of the distance vector and the vector of contacting element area, and the condition of contact, it can be judged whether or not a node on the slave surface and the corresponding master surface are in the state of SPF/DB. The Mindlin shell element is employed to simulate SPF/DB process of an asymmetry double-cell cup of Ti-6Al-4V to examine the efficiency of the new algorithm using ARVIP-3D. The results of the numerical simulation are in good agreement with experimental results.展开更多
Adding Na_(2)CO_(3) to the NaHCO_(3) cooling crystallizer, using the common ion effect to promote crystallization and improve product morphology, is a new process recently proposed in the literature. However, the mech...Adding Na_(2)CO_(3) to the NaHCO_(3) cooling crystallizer, using the common ion effect to promote crystallization and improve product morphology, is a new process recently proposed in the literature. However, the mechanism of the impact of Na_(2)CO_(3)on the crystal morphology is still indeterminate. In this work, the crystallization of NaHCO_(3)in water and Na_(2)CO_(3)–NaHCO_(3) aqueous solution was investigated by experiments and molecular dynamics simulations(MD). The crystallization results demonstrate that the morphology of NaHCO_(3) crystal changed gradually from needle-like to flake structure with the addition of Na_(2)CO_(3). The simulation results indicate that the layer docking model and the modified attachment energy formula without considering the roughness of crystal surface can obtain the crystal morphology in agreement with the experimental results, but the lower molecules of the crystal layer have to be fixed during MD. Thermodynamic calculation of the NaHCO_(3) crystallization process verifies that the common ion effect from Na^(+)and the ionization equilibrium transformation from CO_(3)^(2-) jointly promote the precipitation of NaHCO_(3) crystal. The radial distribution function analysis indicates that the oxygen atoms of Na_(2)CO_(3) formed strong hydrogen bonds with the hydrogen atoms of the(0 1 1) face, which weakened the hydration of water molecules at the crystal surface, resulting in a significant change in the attachment energy of this crystal surface. In addition, Na+and CO_(3)^(2-) are more likely to accumulate on the(011) face,resulting in the fastest growth rate on this crystal surface, which eventually leads to a change in crystal morphology from needle-like to flake-like.展开更多
The atom-bond connectivity(ABC) index provides a good model for the stability of linear and branched alkanes as well as the strain energy of cycloalkanes,which is defined as ABC(G) =∑ uv∈E(G) √d u+dv-2 dudv,...The atom-bond connectivity(ABC) index provides a good model for the stability of linear and branched alkanes as well as the strain energy of cycloalkanes,which is defined as ABC(G) =∑ uv∈E(G) √d u+dv-2 dudv,where du denotes the degree of a vertex u in G.A chemical graph is a graph in which no vertex has degree greater than 4.In this paper,we obtain the sharp upper and lower bounds on ABC index of chemical bicyclic graphs.展开更多
A computer model for studying the mechanical properties of point - bonded nonwovens is established. The simulation tensile curve of a nonwoven fabric may be obtained based on relaxation procedure when the mechanical p...A computer model for studying the mechanical properties of point - bonded nonwovens is established. The simulation tensile curve of a nonwoven fabric may be obtained based on relaxation procedure when the mechanical properties of fibers, the arrangement of bond points in the fibrous web and specimen size are inputted into the computer. Relaxation method and relevant algorithms of computer simulation are described in detail. The validity of the model is also demonstrated.展开更多
It is very important to get the tensile properties of bridgefiber bundles between bond points in the simulation stud-ies on the tensile properties of point - bonded nonwov-ens. In order to construct models to predict ...It is very important to get the tensile properties of bridgefiber bundles between bond points in the simulation stud-ies on the tensile properties of point - bonded nonwov-ens. In order to construct models to predict the tensileproperties of bridge fiber bundles, it is essential to inves-tigate the number of fibers passing through certain bondpoints. The probability of fibers passing through bondpoints in nonwovens is investigated. A tentative proba-bility formula that includes the factors such as specimensize, fiber length and bond point radius, and a formulato calculate the number of fibers passing through bondpoints are proposed on the basis of the data of the simu-lations.展开更多
The interactions and structures of the urea-water system are studied by an all-atom molecular dynamics (MD) simulation. The hydrogen-bonding network and the radial distribution functions are adopted in MD simulation...The interactions and structures of the urea-water system are studied by an all-atom molecular dynamics (MD) simulation. The hydrogen-bonding network and the radial distribution functions are adopted in MD simulations. The structures of urea-water mixtures can be classified into different regions from the analysis of the hydrogen-bonding network. The urea molecule shows the certain tendency to the self-aggregate with the mole fraction of urea increasing. Moreover, the results of the MD simulations are also compare with the chemical shifts and viscosities of the urea aqueous solutions, and the statistical results of the average number hydrogen bonds in the MD simulations are in agreement with the experiment data such as chemical shifts of the hydrogen atom and viscosity.展开更多
All-atom molecular dynamics (MD) simulations and chemical shifts were used to study interactions and structures in the glycine-water system. Radial distribution functions and the hydrogen-bond network were applied i...All-atom molecular dynamics (MD) simulations and chemical shifts were used to study interactions and structures in the glycine-water system. Radial distribution functions and the hydrogen-bond network were applied in MD simulations. Aggregates in the aqueous glycine solution could be classified into different regions by analysis of the hydrogen-bonding network. Temperature-dependent NMR spectra and the viscosity of glycine in aqueous solutions were measured to compare with the results of MD simulations. The variation tendencies of the hydrogen atom chemical shifts and viscosity with concentration of glycine agree with the statistical results of hydrogen bonds in the MD simulations.展开更多
Does the halogen bonding interaction co-exist in liquid when it competes with the hydrogen bonding interaction? The classical molecular dynamics simulations for the solvation properties of CLF molecule in water are p...Does the halogen bonding interaction co-exist in liquid when it competes with the hydrogen bonding interaction? The classical molecular dynamics simulations for the solvation properties of CLF molecule in water are performed with the Lennard-Jones plus Coulomb electrostatic potential parameters that are optimized with ab initio interaction energy calculations for the pre-reactive H2O-CLF complex. We find that the halogen bonding interactions occur between O and CL atoms and have the comparable strength and population with respect to the hydrogen bonding interactions of C1...H.展开更多
The dibenzothiophene derivatives, namely 2-(dibenzothiophene-2-carbonyl)benzoic acid and 2-(diben- zothiophene-2-carbonyl)alkyl benzoate, were synthesized and characterized by nuclear magnetic resonance (1H NMR)...The dibenzothiophene derivatives, namely 2-(dibenzothiophene-2-carbonyl)benzoic acid and 2-(diben- zothiophene-2-carbonyl)alkyl benzoate, were synthesized and characterized by nuclear magnetic resonance (1H NMR), matrix-assisted laser desorption/ionization time of flight mass spectrometry, and elemental analysis. The self- association behavior of these dibenzothiophene derivatives in CH2C12 and CH3CN was investigated using UV-visible absorption spectroscopy, fourier transform infrared spec- troscopy, and atomic force microscopy. It was found that the carboxylic acid exhibited a strong self-association trend in CH2C12 solution at a concentration of about 5 × 10^-7 M. Hydrogen bonding of carboxyl in the dibenzoth- iophene derivatives was confirmed to be the main driving force for the formation of the carboxylic acid aggregates.展开更多
Introduction The molecular dynamics simulation technique has recently proved to be a suitable alternative approachfor simulation of vibrational spectroscopy. In this study, molecular dynamics was utilized to understan...Introduction The molecular dynamics simulation technique has recently proved to be a suitable alternative approachfor simulation of vibrational spectroscopy. In this study, molecular dynamics was utilized to understandlow frequency vibrations in highly ordered poly(ρ-phenylene terephthalmide) (PPTA). A key structuralfeature of this polymer is the presence of hydrogen bonds. There is little question that this strong localized展开更多
This paper addresses the issue of modeling of the hydraulic long transmission line. In its base, such model is nonlinear with distributed parameters. Since general solution in closed-form for such model in time-domain...This paper addresses the issue of modeling of the hydraulic long transmission line. In its base, such model is nonlinear with distributed parameters. Since general solution in closed-form for such model in time-domain is not available, certain simplifications have to be introduced. The pipeline in the paper has been divided to a cascaded network of n segments so that a model with lumped parameters could be reached. For segment modeling, a standard library of bond graphs element has been used. On the basis of models with lumped parameters, the effect of the number of segments, pipeline length and effective bulk modulus on the dynamics of long transmission line have been analyzed.展开更多
In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and e...In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value.展开更多
We study the friction properties of interlayer bonded bilayer graphene by simulating the movement of a slider on the surface of bilayer graphene using molecular dynamics.The results show that the presence of the inter...We study the friction properties of interlayer bonded bilayer graphene by simulating the movement of a slider on the surface of bilayer graphene using molecular dynamics.The results show that the presence of the interlayer covalent bonds due to the local sp^(3) hybridization of carbon atoms in the bilayer graphene seriously reduces the frictional coefficient of the bilayer graphene surface to 30%,depending on the coverage of interlayer sp^(3) bonds and normal loads.For a certain coverage of interlayer sp3bonds,when the normal load of the slider reaches a certain value,the surface of this interlayer bonded bilayer graphene will lose the friction reduction effect on the slider.Our findings provide guidance for the regulation and manipulation of the frictional properties of bilayer graphene surfaces through interlayer covalent bonds,which may be useful for applications of friction related graphene based nanodevices.展开更多
Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a...Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a lack of efficient tools that accurately predict DES formation.The search for DES relies heavily on intuition or trial-and-error processes,leading to low success rates or missed opportunities.Recognizing that hydrogen bonds(HBs)play a central role in DES formation,we aim to identify HB features that distinguish DES from non-DES systems and use them to develop machine learning(ML)models to discover new DES systems.We first analyze the HB properties of 38 known DES and 111 known non-DES systems using their molecular dynamics(MD)simulation trajectories.The analysis reveals that DES systems have two unique features compared to non-DES systems:The DESs have①more imbalance between the numbers of the two intra-component HBs and②more and stronger inter-component HBs.Based on these results,we develop 30 ML models using ten algorithms and three types of HB-based descriptors.The model performance is first benchmarked using the average and minimal receiver operating characteristic(ROC)-area under the curve(AUC)values.We also analyze the importance of individual features in the models,and the results are consistent with the simulation-based statistical analysis.Finally,we validate the models using the experimental data of 34 systems.The extra trees forest model outperforms the other models in the validation,with an ROC-AUC of 0.88.Our work illustrates the importance of HBs in DES formation and shows the potential of ML in discovering new DESs.展开更多
The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulati...The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulations of ethane dehydrogenation over Co@BEA zeolite at different temperatures.AIMD simulations showed that a sharp decrease in free energy barrier as temperature increased.Our analysis of the temperature dependence of activation free energies uncovered an unusual entropic effect accompanying the reaction.The unique spatial structures around the Co active site at different temperatures influenced both the extent of charge transfer in the transition state and the arrangement of 3d orbital energy levels.We provided explanations consistent with the principles of thermodynamics and statistical physics.The insights gained at the atomic level have offered a fresh interpretation of the intricate long-range interplay between local chemical reactions and extensive chemical environments.展开更多
基金Supported by the Basic and Frontier Technology Research Program of Henan Province (No.082300410390)Backbone of Young Teachers in University Plan to Subsidize Projects of Henan Province (No.2005-174)
文摘A dynamic simulation method for non-linear systems based on genetic programming (GP) and bond graphs (BG) was developed to improve the design of nonlinear multi-domain energy conversion systems. The genetic operators enable the embryo bond graph to evolve towards the target graph according to the fitness function. Better simulation requires analysis of the optimization of the eigenvalue and the filter circuit evolution. The open topological design and optimized convergence for the operation, but also the design of nonlinear multi-domain systems. space search ability of this method not only gives a more reduces the generation time for the new circuit graph for
基金the National Key R&D Program of China(Grant No.2019YFB1704600)the Hubei Provincial Natural Science Foundation of China(Grant No.2020CFA032).
文摘Currently,wire bonding is the most popular first-level interconnection technology used between the die and package terminals,but even with its long-term and excessive usage,the mechanism of wire bonding has not been completely evaluated.Therefore,fundamental research is still needed.In this study,the mechanism of microweld formation and breakage during Cu-Cu wire bonding was investigated by using molecular dynamics simulation.The contact model for the nanoindentation process between the wire and substrate was developed to simulate the contact process of the Cu wire and Cu substrate.Elastic contact and plastic instability were investigated through the loading and unloading processes.Moreover,the evolution of the indentation morphology and distributions of the atomic stress were also investigated.It was shown that the loading and unloading curves do not coincide,and the unloading curve exhibited hysteresis.For the substrate,in the loading process,the main force changed from attractive to repulsive.The maximum von Mises stress increased and shifted from the center toward the edge of the contact area.During the unloading process,the main force changed from repulsive to attractive.The Mises stress reduced first and then increased.Stress concentration occurs around dislocations in the middle area of the Cu wire.
基金the financial support from Iran National Science Foundation (INSF) under grant number 95822903
文摘A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of the bimetal were investigated.A special concentric groove pattern was machined on the top surface of the insert(squeeze cast Al-4.5 wt.%Cu) and its effects on heat transfer,solidification and distribution of generated stresses along the interface region of the bimetal components were simulated using ProCAST and ANSYS softwares and experimentally verified. Simulation results indicated complete melting of the tips of the surface grooves and local generation of large stress gradient fields along the interface. These are believed to result in rupture of the insert interfacial aluminum oxide layer facilitating diffusion bonding of the bimetal components. Microstructural evaluations confirmed formation of an evident transition zone along the interface region of the bimetal. Average thickness of the transition zone and tensile strength of the bimetal were significantly increased to about 375 μm and 54 MPa, respectively, by applying the surface pattern.The proposed method is an affordable and promising approach for compound squeeze casting of Al-Al macrocomposite bimetals without resort to any prior cost and time intensive chemical or coating treatments of the solid insert.
文摘The research on numerical simulation for combinative process of SPF/DB is carried out in this paper. The contacting problem of sheets is analyzed by using the penalty method. In order to solve the contact problem of different parts of the sheet, a new algorithm for contacting judgment is proposed. According to the relation of the distance vector and the vector of contacting element area, and the condition of contact, it can be judged whether or not a node on the slave surface and the corresponding master surface are in the state of SPF/DB. The Mindlin shell element is employed to simulate SPF/DB process of an asymmetry double-cell cup of Ti-6Al-4V to examine the efficiency of the new algorithm using ARVIP-3D. The results of the numerical simulation are in good agreement with experimental results.
基金supported by the National Natural Science Foundation of China (21878143)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Adding Na_(2)CO_(3) to the NaHCO_(3) cooling crystallizer, using the common ion effect to promote crystallization and improve product morphology, is a new process recently proposed in the literature. However, the mechanism of the impact of Na_(2)CO_(3)on the crystal morphology is still indeterminate. In this work, the crystallization of NaHCO_(3)in water and Na_(2)CO_(3)–NaHCO_(3) aqueous solution was investigated by experiments and molecular dynamics simulations(MD). The crystallization results demonstrate that the morphology of NaHCO_(3) crystal changed gradually from needle-like to flake structure with the addition of Na_(2)CO_(3). The simulation results indicate that the layer docking model and the modified attachment energy formula without considering the roughness of crystal surface can obtain the crystal morphology in agreement with the experimental results, but the lower molecules of the crystal layer have to be fixed during MD. Thermodynamic calculation of the NaHCO_(3) crystallization process verifies that the common ion effect from Na^(+)and the ionization equilibrium transformation from CO_(3)^(2-) jointly promote the precipitation of NaHCO_(3) crystal. The radial distribution function analysis indicates that the oxygen atoms of Na_(2)CO_(3) formed strong hydrogen bonds with the hydrogen atoms of the(0 1 1) face, which weakened the hydration of water molecules at the crystal surface, resulting in a significant change in the attachment energy of this crystal surface. In addition, Na+and CO_(3)^(2-) are more likely to accumulate on the(011) face,resulting in the fastest growth rate on this crystal surface, which eventually leads to a change in crystal morphology from needle-like to flake-like.
基金Supported by the National Natural Science Foundation of China(11071272,10831001,11171279,11101087)the Young Talent Foundation of Fuzhou University(XRC-1154)
文摘The atom-bond connectivity(ABC) index provides a good model for the stability of linear and branched alkanes as well as the strain energy of cycloalkanes,which is defined as ABC(G) =∑ uv∈E(G) √d u+dv-2 dudv,where du denotes the degree of a vertex u in G.A chemical graph is a graph in which no vertex has degree greater than 4.In this paper,we obtain the sharp upper and lower bounds on ABC index of chemical bicyclic graphs.
文摘A computer model for studying the mechanical properties of point - bonded nonwovens is established. The simulation tensile curve of a nonwoven fabric may be obtained based on relaxation procedure when the mechanical properties of fibers, the arrangement of bond points in the fibrous web and specimen size are inputted into the computer. Relaxation method and relevant algorithms of computer simulation are described in detail. The validity of the model is also demonstrated.
文摘It is very important to get the tensile properties of bridgefiber bundles between bond points in the simulation stud-ies on the tensile properties of point - bonded nonwov-ens. In order to construct models to predict the tensileproperties of bridge fiber bundles, it is essential to inves-tigate the number of fibers passing through certain bondpoints. The probability of fibers passing through bondpoints in nonwovens is investigated. A tentative proba-bility formula that includes the factors such as specimensize, fiber length and bond point radius, and a formulato calculate the number of fibers passing through bondpoints are proposed on the basis of the data of the simu-lations.
基金This work was supported by the National Natural Science Foundation of China (No.20903026), the Doctoral Scientific Research Foundation of the Natural Science Foundation of Guangdong Province (No.7301567), and the Research Foundation of Guangdong Pharmaceutical University (No.2006YKX05).
文摘The interactions and structures of the urea-water system are studied by an all-atom molecular dynamics (MD) simulation. The hydrogen-bonding network and the radial distribution functions are adopted in MD simulations. The structures of urea-water mixtures can be classified into different regions from the analysis of the hydrogen-bonding network. The urea molecule shows the certain tendency to the self-aggregate with the mole fraction of urea increasing. Moreover, the results of the MD simulations are also compare with the chemical shifts and viscosities of the urea aqueous solutions, and the statistical results of the average number hydrogen bonds in the MD simulations are in agreement with the experiment data such as chemical shifts of the hydrogen atom and viscosity.
基金Supported by the National Natural Science Foundation of China(No.20903026)the Talents Introduction Foundation for Universities of Guangdong Province(2011)Scientific Research Foundation of the Natural Science Foundation of Guangdong Province(No.S2011010002483)
文摘All-atom molecular dynamics (MD) simulations and chemical shifts were used to study interactions and structures in the glycine-water system. Radial distribution functions and the hydrogen-bond network were applied in MD simulations. Aggregates in the aqueous glycine solution could be classified into different regions by analysis of the hydrogen-bonding network. Temperature-dependent NMR spectra and the viscosity of glycine in aqueous solutions were measured to compare with the results of MD simulations. The variation tendencies of the hydrogen atom chemical shifts and viscosity with concentration of glycine agree with the statistical results of hydrogen bonds in the MD simulations.
基金This work is supported by the National Natural Science Foundation of China (No.20673105).
文摘Does the halogen bonding interaction co-exist in liquid when it competes with the hydrogen bonding interaction? The classical molecular dynamics simulations for the solvation properties of CLF molecule in water are performed with the Lennard-Jones plus Coulomb electrostatic potential parameters that are optimized with ab initio interaction energy calculations for the pre-reactive H2O-CLF complex. We find that the halogen bonding interactions occur between O and CL atoms and have the comparable strength and population with respect to the hydrogen bonding interactions of C1...H.
基金the National Natural Science Foundation of China (No.21376265) for financial supportthe Fundamental Research Funds for the Central Universities (No.14CX02008A)
文摘The dibenzothiophene derivatives, namely 2-(dibenzothiophene-2-carbonyl)benzoic acid and 2-(diben- zothiophene-2-carbonyl)alkyl benzoate, were synthesized and characterized by nuclear magnetic resonance (1H NMR), matrix-assisted laser desorption/ionization time of flight mass spectrometry, and elemental analysis. The self- association behavior of these dibenzothiophene derivatives in CH2C12 and CH3CN was investigated using UV-visible absorption spectroscopy, fourier transform infrared spec- troscopy, and atomic force microscopy. It was found that the carboxylic acid exhibited a strong self-association trend in CH2C12 solution at a concentration of about 5 × 10^-7 M. Hydrogen bonding of carboxyl in the dibenzoth- iophene derivatives was confirmed to be the main driving force for the formation of the carboxylic acid aggregates.
文摘Introduction The molecular dynamics simulation technique has recently proved to be a suitable alternative approachfor simulation of vibrational spectroscopy. In this study, molecular dynamics was utilized to understandlow frequency vibrations in highly ordered poly(ρ-phenylene terephthalmide) (PPTA). A key structuralfeature of this polymer is the presence of hydrogen bonds. There is little question that this strong localized
文摘This paper addresses the issue of modeling of the hydraulic long transmission line. In its base, such model is nonlinear with distributed parameters. Since general solution in closed-form for such model in time-domain is not available, certain simplifications have to be introduced. The pipeline in the paper has been divided to a cascaded network of n segments so that a model with lumped parameters could be reached. For segment modeling, a standard library of bond graphs element has been used. On the basis of models with lumped parameters, the effect of the number of segments, pipeline length and effective bulk modulus on the dynamics of long transmission line have been analyzed.
基金supported by the National Natural Science Foundation of China(22178190).
文摘In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value.
基金supported by the Doctor Fund and the Program of independent Research for Young Teachers of Yanshan University (Grant Nos.B919 and 020000534)。
文摘We study the friction properties of interlayer bonded bilayer graphene by simulating the movement of a slider on the surface of bilayer graphene using molecular dynamics.The results show that the presence of the interlayer covalent bonds due to the local sp^(3) hybridization of carbon atoms in the bilayer graphene seriously reduces the frictional coefficient of the bilayer graphene surface to 30%,depending on the coverage of interlayer sp^(3) bonds and normal loads.For a certain coverage of interlayer sp3bonds,when the normal load of the slider reaches a certain value,the surface of this interlayer bonded bilayer graphene will lose the friction reduction effect on the slider.Our findings provide guidance for the regulation and manipulation of the frictional properties of bilayer graphene surfaces through interlayer covalent bonds,which may be useful for applications of friction related graphene based nanodevices.
基金supported by Ignite Research Collaborations(IRC),Startup funds,and the UK Artificial Intelligence(AI)in Medicine Research Alliance Pilot(NCATS UL1TR001998 and NCI P30 CA177558)。
文摘Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a lack of efficient tools that accurately predict DES formation.The search for DES relies heavily on intuition or trial-and-error processes,leading to low success rates or missed opportunities.Recognizing that hydrogen bonds(HBs)play a central role in DES formation,we aim to identify HB features that distinguish DES from non-DES systems and use them to develop machine learning(ML)models to discover new DES systems.We first analyze the HB properties of 38 known DES and 111 known non-DES systems using their molecular dynamics(MD)simulation trajectories.The analysis reveals that DES systems have two unique features compared to non-DES systems:The DESs have①more imbalance between the numbers of the two intra-component HBs and②more and stronger inter-component HBs.Based on these results,we develop 30 ML models using ten algorithms and three types of HB-based descriptors.The model performance is first benchmarked using the average and minimal receiver operating characteristic(ROC)-area under the curve(AUC)values.We also analyze the importance of individual features in the models,and the results are consistent with the simulation-based statistical analysis.Finally,we validate the models using the experimental data of 34 systems.The extra trees forest model outperforms the other models in the validation,with an ROC-AUC of 0.88.Our work illustrates the importance of HBs in DES formation and shows the potential of ML in discovering new DESs.
文摘The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulations of ethane dehydrogenation over Co@BEA zeolite at different temperatures.AIMD simulations showed that a sharp decrease in free energy barrier as temperature increased.Our analysis of the temperature dependence of activation free energies uncovered an unusual entropic effect accompanying the reaction.The unique spatial structures around the Co active site at different temperatures influenced both the extent of charge transfer in the transition state and the arrangement of 3d orbital energy levels.We provided explanations consistent with the principles of thermodynamics and statistical physics.The insights gained at the atomic level have offered a fresh interpretation of the intricate long-range interplay between local chemical reactions and extensive chemical environments.