期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Research on the macro-and meso-mechanical properties of frozen sand mold based on Hertz-Mindlin with Bonding model
1
作者 Jianpei Shi Zhongde Shan Haoqin Yang 《Particuology》 SCIE EI CAS CSCD 2024年第5期176-191,共16页
In this study,macro-and meso-mechanical properties of frozen sand molds were discussed based on the Hertz-Mindlin with Bonding(HMB)model.Plackett-Burman,steepest ascent,and central composite designs were utilized to p... In this study,macro-and meso-mechanical properties of frozen sand molds were discussed based on the Hertz-Mindlin with Bonding(HMB)model.Plackett-Burman,steepest ascent,and central composite designs were utilized to propose a parameter calibration methodology.The effects of mesoscopic parameter variations on the compressive strength and average gradient of stress-strain were investigated through response surface method analysis.Results showed that the relative error between the simulated and measured repose angle is 3.1%under calibrated intrinsic contact parameters.The compressive strength and average stress-strain gradient primarily depend on the normal and shear stiffness per unit area,as well as the particle size and porosity of the silica sand.Furthermore,taking load-displacement curves of three frozen sand molds with different geometric characteristics as the target value,the reliability and effectiveness of the frozen sand mold HMB model were verified through uniaxial compression tests and discrete element simulations. 展开更多
关键词 Frozen sand mold Hertz-Mindlin with bonding model Uniaxial compression test Discrete element method Mechanical properties
原文传递
Recent advances and trends in roll bonding process and bonding model:A review 被引量:1
2
作者 Zixuan LI Shahed REZAEI +4 位作者 Tao WANG Jianchao HAN Xuedao SHU Zbigniew PATER Qingxue HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第4期36-74,共39页
This review presents a thorough survey of the roll bonding process with a focus on the bimetallic bars/tubes as well as the bonding models and criteria.The review aims to provide insight into cold,hot and cryogenic bo... This review presents a thorough survey of the roll bonding process with a focus on the bimetallic bars/tubes as well as the bonding models and criteria.The review aims to provide insight into cold,hot and cryogenic bonding mechanisms at the micro and atomic scale and act as a guide for researchers working on roll bonding,other joining processes and bonding simulation.Mean-while,the shortcomings of roll bonding processes are presented from the aspect of formable shapes,while bonding models are shown from the aspect of calculation time,convergence,interface behav-ior of dissimilar materials as well as hot bonding status prediction.Two well-accepted numerical methodologies of bonding models,namely the contact algorithm and cohesive zone model(CZM)of bonding models and in simulations of the bonding process are highlighted.Particularly,recent advances and trends in the application of the combination of mechanical interlocking and metallurgical bonding,special energy fields,gradient structure,novel materials,green technology and soft computing method in the roll bonding process are also discussed.The challenges for advancing and prospects of the roll bonding process and bonding model are presented in an attempt to shed some light on the future research direction. 展开更多
关键词 BIMETALLIC bonding mechanism bonding model Numerical simulation Roll bonding process
原文传递
Microstructure Model of the Interfacial Zone Between Fresh and Old Concrete 被引量:6
3
作者 谢慧才 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第4期64-68,共5页
A new model of repaired concrete which divides the bonding interface into a penetrating layer,a strongly-affected layer and a weakly-affected layer was put forward.The model is mainly based on the observation of the m... A new model of repaired concrete which divides the bonding interface into a penetrating layer,a strongly-affected layer and a weakly-affected layer was put forward.The model is mainly based on the observation of the microstructure of interface between fresh and old (3 months to 60 years) concretes by using scanning electron microscopy.Then,the mechanism of the microstructure formed was analyzed.Finally,the relationship between the micro-structure and macro-mechanical performance of the interface was discussed. 展开更多
关键词 microstructure of the interface bonding model repairing of concrete
下载PDF
Numerical and experimental investigation on hydraulic-electric rock fragmentation of heterogeneous granite
4
作者 Xiaohua Zhu Ling He +3 位作者 Weiji Liu Yunxu Luo Youjian Zhang Wuji Tang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期15-29,共15页
Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering th... Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering the heterogeneity of the rock,microscopic thermodynamic properties,and shockwave time domain waveforms,based on the shockwave model,digital imaging technology and the discrete element method,the cyclic loading numerical simulations of HERF is achieved by coupling electrical,thermal,and solid mechanics under different formation temperatures,confining pressure,initial peak voltage,electrode bit diameter,and loading times.Meanwhile,the HERF discharge system is conducive to the laboratory experiments with various electrical parameters and the resulting broken pits are numerically reconstructed to obtain the geometric parameters.The results show that,the completely broken area consists of powdery rock debris.In the pre-broken zone,the mineral cementation of the rock determines the transition of type CⅠcracks to type CⅡand type CⅢcracks.Furthermore,the peak pressure of the shockwave increased with initial peak voltage but decreased with electrode bit diameter,while the wave front time reduced.Moreover,increasing well depth,formation temperature and confining pressure augment and inhibit HERF,but once confining pressure surpassed the threshold of 60 MPa for 152.40,215.90,and 228.60 mm electrode bits,and 40 MPa for 309.88 mm electrode bits,HERF is promoted.Additionally,for the same kind of rock,the volume and width of the broken pit increase with higher initial peak voltage and rock fissures will promote HERF.Eventually,the electrode drill bit with a 215.90 mm diameter is more suitable for drilling pink granite.This research contributes to a better microscopic understanding of HERF and provides valuable insights for electrode bit selection,as well as the optimization of circuit parameters for HERF technology. 展开更多
关键词 Hydraulic-electric rock fragmentation SHOCKWAVE Thermodynamics MICROCRACKS Weak Linear Parallel Bond model
下载PDF
Heterogeneities of grain boundary contact for simulation of laboratoryscale mechanical behavior of granitic rocks
5
作者 Xiongyu Hu Marte Gutierrez Zhiwei Yan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2629-2644,共16页
From a practical point of view,grain structure heterogeneities are key parameters that control the rock response and still remains a challenge to incorporate in a quantitative manner.One of the less discussed topics i... From a practical point of view,grain structure heterogeneities are key parameters that control the rock response and still remains a challenge to incorporate in a quantitative manner.One of the less discussed topics in the context of the grain-based model(GBM)in the particle flow code(PFC)is the contact heterogeneities and the appropriate contact model to mimic the grain boundary behavior.Generally,the smooth joint(SJ)model and linear parallel bond(LPB)model are used to simulate the grain boundary behavior.However,the literature does not document the suitability of different models for specific problems.Another challenge in implementing GBM in PFC is that only a single bonding parameter is used at the grain boundaries.The aim of this study is to investigate the responses of a laboratory-scale specimen with SJ and LPB models,considering grain boundary heterogeneous and homogeneous contact parameters.Uniaxial and biaxial compression tests are performed to calibrate the response of Creighton granite.The stressestrain curves,volumetric dilation,inter-crack(crack in the grain boundary),and intra-crack(crack within the grain)development,and failure patterns associated with different contact models are examined.It was found that both the SJ and LPB models can reproduce the pre-peak behavior observed for a granitic rock type.However,the LPB model is unable to reproduce the post-peak behavior.Due to the large interlocking effect originating from the balls in contact and the ball size in the LPB model,local dilation is induced at the grain boundaries.This overestimates the volumetric dilation and residual shear strength.The LPB model tends to result in discontinuous inter-cracks and stress localization in the rock specimen,resulting in fine fragments at the rock surface during failure. 展开更多
关键词 Grain boundary contact Smooth joint(SJ)model Linear parallel bond(LPB)model Contact heterogeneities Particle flow code(PFC) Granitic rock
下载PDF
Influence of heterogeneity on rock strength and stiffness using discrete element method and parallel bond model 被引量:8
6
作者 Spyridon Liakas Catherine O’Sullivan Charalampos Saroglou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期575-584,共10页
The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are ... The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are important to establish the extent to which those models can capture realistic rock behaviors.Hitherto the focus in such comparison studies has either been on homogeneous specimens or use of two-dimensional(2D) models.In situ rock formations are often heterogeneous,thus exploring the ability of this type of models to capture heterogeneous material behavior is important to facilitate their use in design analysis.In situ stress states are basically three-dimensional(3D),and therefore it is important to develop 3D models for this purpose.This paper revisits an earlier experimental study on heterogeneous specimens,of which the relative proportions of weaker material(siltstone) and stronger,harder material(sandstone) were varied in a controlled manner.Using a 3D DEM model with the parallel bond model,virtual heterogeneous specimens were created.The overall responses in terms of variations in strength and stiffness with different percentages of weaker material(siltstone) were shown to agree with the experimental observations.There was also a good qualitative agreement in the failure patterns observed in the experiments and the simulations,suggesting that the DEM data enabled analysis of the initiation of localizations and micro fractures in the specimens. 展开更多
关键词 Discrete element method(DEM) Heterogeneous rocks Strength and stiffness Parallel bond model
下载PDF
Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM 被引量:12
7
作者 Ingrid Tomac Marte Gutierrez 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第1期92-104,共13页
This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has be... This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has been recently extended by the authors to account for coupled convective econductive heat flow and transport, and to enable full hydro-thermal fluidesolid coupled modeling.The application of the work is on enhanced geothermal systems(EGSs), and hydraulic fracturing of hot dry rock(HDR) is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convectiveeconductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity. 展开更多
关键词 Hydro-thermo-mechanical(HTM) modeling Enhanced geothermal systems(EGSs) Discrete element method(DEM) Bonded particle model(BPM) Conductive-convective heat flow and transport Hydraulic fracturing Rock permeability enhancement
下载PDF
DEM investigation of weathered rocks using a novel bond contact model 被引量:1
8
作者 Zhenming Shi Tao Jiang +2 位作者 Mingjing Jiang Fang Liu Ning Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第3期327-336,共10页
The distinct element method(DEM) incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the... The distinct element method(DEM) incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the changing laws of microscopic parameters from observed decaying properties of rocks during weathering. The changing laws of macroscopic mechanical properties of typical rocks were summarized based on the existing research achievements. Parametric simulations were then conducted to analyze the relationships between macroscopic and microscopic parameters, and to derive the changing laws of microscopic parameters for the DEM model. Equipped with the microscopic weathering laws, a series of DEM simulations of basic laboratory tests on weathered rock samples was performed in comparison with analytical solutions. The results reveal that the relationships between macroscopic and microscopic parameters of rocks against the weathering period can be successfully attained by parametric simulations. In addition, weathering has a significant impact on both stressestrain relationship and failure pattern of rocks. 展开更多
关键词 Distinct element method(DEM) Bond contact model Rock weathering Weathering law Microscopic parameter
下载PDF
Integration of three-dimensional continuum model and two-dimensional bonded block model for studying the damage process in a granite pillar at the Creighton Mine,Sudbury,Canada
9
作者 Sankhaneel Sinha Gabriel Walton 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期275-288,共14页
Bonded blockmodel(BBM)has shownpotential in replicating rockmass behavior aswell as the rockesupport interactionmechanism,but their practical application is limited totwo dimensions due to the high associated computat... Bonded blockmodel(BBM)has shownpotential in replicating rockmass behavior aswell as the rockesupport interactionmechanism,but their practical application is limited totwo dimensions due to the high associated computational demand.To allow for the use of BBM in simulating three-dimensional(3D)problems,this study proposes an integrated 3D continuumetwo-dimensional(2D)discontinuum approach,in context of rock pillars.A cross-section of a granite pillar was simulated using a BBM with a load path from a calibrated mine-scale FLAC^(3D)model.Pillar support as employed in the mine was also incorporated in different stages during the simulation.Themodel was calibrated by varying the input parameters until the displacements at six locations within the pillarmatchedthosemeasuredby amulti-point borehole extensometer(MPBX)inthe field.The calibratedmodel was subsequently used to understand how the support and load path influenced the damage evolution in the pillar.The shear component of the load pathwas found to have amajor effect on the severity and extent of the damaged regions.When the support density was increased in the model,the lateral displacements along the pillar walls were significantly suppressed in a somewhat unpredictable manner.Thiswas explained by the interaction between the supports and the damaged regions at the corners,which ultimately modified the stresses along the pillar periphery.The amount of displacement reduction obtained by increasing the support density illustrates the potential of BBMto be used as a support design tool. 展开更多
关键词 Bonded block model(BBM) Rock pillars Supports Continuum-discontinuum integration
下载PDF
Modeling calving process of glacier with dilated polyhedral discrete element method
10
作者 Lu Liu Ji Li +3 位作者 Qizhen Sun Chunhua Li Sue Cook Shunying Ji 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第7期159-169,共11页
Mass loss caused by glacier calving is one of the direct contributors to global sea level rise.Reliable calving laws are required for accurate modelling of ice sheet mass balance.Both continuous and discontinuous meth... Mass loss caused by glacier calving is one of the direct contributors to global sea level rise.Reliable calving laws are required for accurate modelling of ice sheet mass balance.Both continuous and discontinuous methods have been used for glacial calving simulations.In this study,the discrete element method(DEM)based on dilated polyhedral elements is introduced to simulate the calving process of a tidewater glacier.Dilated polyhedrons can be obtained from the Minkowski sum of a sphere and a core polyhedron.These elements can be utilized to generate a continuum ice material,where the interaction force between adjacent elements is modeled by constructing bonds at the joints of the common faces.A hybrid fracture model considering fracture energy is introduced.The viscous creep behavior of glaciers on long-term scales is not considered.By applying buoyancy and gravity to the modelled glacier,DEM results show that the calving process is caused by cracks which are initialized at the top of the glacier and spread to the bottom.The results demonstrate the feasibility of using the dilated polyhedral DEM method in glacier simulations,additionally allowing the fragment size of the breaking fragments to be counted.The relationship between crack propagation and internal stress in the glacier is analyzed during calving process.Through the analysis of the Mises stress and the normal stress between the elements,it is found that geometric changes caused by the glacier calving lead to the redistribution of the stress.The tensile stress between the elements is the main influencing factor of glacier ice failure.In addition,the element shape,glacier base friction and buoyancy are studied,the results show that the glacier model based on the dilated polyhedral DEM is sensitive to the above conditions. 展开更多
关键词 glacier calving discrete element method dilated polyhedral element bond and fracture model
下载PDF
Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression 被引量:10
11
作者 Amin Manouchehrian Mohammad Fatehi Marji 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1389-1397,共9页
In many situations rocks are subjected to biaxial loading and the failure process is controlled by the lateral confinement stresses. The importance of confinement stresses has been recognized in the literature by many... In many situations rocks are subjected to biaxial loading and the failure process is controlled by the lateral confinement stresses. The importance of confinement stresses has been recognized in the literature by many researchers, in particular, its influence on strength and on the angle of fracture, but still there is not a clear description for the influence of confining stress on the crack propagation mechanism of rocks. This paper presents a numerical pro- cedure for the analysis of crack propagation in rock-like ma- terials under compressive biaxial loads. Several numerical simulations of biaxial tests on the rock specimen have been carried out by a bonded particle model (BPM) and the influ- ence of confinement on the mechanism of crack propagation from a single flaw in rock specimens is studied. For this purpose, several biaxial compressive tests on rectangular spec- imens under different confinement stresses were modeled in (2 dimensional particle flow code) PFC2D. The results show that wing cracks initiate perpendicular to the flaw and trend toward the direction of major stress, however, when the lat- eral stresses increase, this initiation angle gets wider. Also it is concluded that in addition to the material type, the initiation direction of the secondary cracks depends on confine- ment stresses, too. Besides, it is understood that secondary cracks may be produced from both tensile and shear mechanisms. 展开更多
关键词 Crack propagation CONFINEMENT Bonded par-ticle model - Rock Secondary cracks
下载PDF
Stresses induced by post-tensioned anchor in jointed rock mass 被引量:9
12
作者 Alan Showkati Parviz Maarefvand Hossein Hassani 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1463-1476,共14页
A new analytical study on stresses around a post-tensioned anchor in rocks with two perpendicular joint sets is presented. The assumptions of orthotropic elastic rock with plane strain conditions are made in derivatio... A new analytical study on stresses around a post-tensioned anchor in rocks with two perpendicular joint sets is presented. The assumptions of orthotropic elastic rock with plane strain conditions are made in derivation of the formulations. A tri-linear bond-slip constitutive law is used for modeling the tendon-grout interface behavior and debonding of this interface. The bearing plate width is also considered in the analysis. The obtained solutions are in the integral forms and numerical techniques that have been used for evaluation. In the illustrative example given, the major principal stress is compressive in the anchor free zone and compressive stress concentrations of 815 k Pa and 727 k Pa(for the anchor load of 300 k N) are observed under the bearing plate and the bond length proximal end, respectively. However, large values of tensile stresses with the maximum of-434 k Pa are formed at the bond length distal end. The results obtained using the proposed solution are compared very those of numerical method(FEM). 展开更多
关键词 post-tensioned anchor jointed rock stress distribution analytical solution tri-linear bond-slip model bond length bearing plate
下载PDF
ELASTIC BEHAVIOR OF COMB-LIKE POLYMER CHAINS 被引量:1
13
作者 陈进 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2010年第3期311-322,共12页
Three-dimensional Monte Carlo simulations of comb-like polymer chains with various backbone lengths Nb, arm lengths Na and arm densities m are carried out to study the elastic behavior of comb-like polymer chains. The... Three-dimensional Monte Carlo simulations of comb-like polymer chains with various backbone lengths Nb, arm lengths Na and arm densities m are carried out to study the elastic behavior of comb-like polymer chains. The radius of gyration, the shape factors and bond length in different cases during elastic process are calculated, and it is found that the comb-like polymer molecules with longer backbone or shorter arm are more close to linear chains. But the arm density rn affects the chain conformation non-monotonously. Some thermodynamic properties are also studied. Average Helmholtz free energy and elastic force fall increase with elongation ratio 2 for all chains. 展开更多
关键词 Comb-like polymer Monte Carlo simulations Bond fluctuation model.
下载PDF
含预埋缺陷复合材料帽形加筋壁板界面失效研究 被引量:1
14
作者 成李南 徐思文 +2 位作者 陈向明 李新祥 屈天骄 《复合材料科学与工程》 CAS 北大核心 2022年第8期28-34,共7页
本文对复合材料帽形加筋壁板后屈曲破坏过程中粘接面失效问题开展了研究。首先设计并完成了无缺陷、含预埋缺陷的帽形单筋板四点弯曲试验以表征加筋壁板典型区域的后屈曲失效;然后基于数值模拟方法,利用内聚力模型(CZM)对无缺陷和含预... 本文对复合材料帽形加筋壁板后屈曲破坏过程中粘接面失效问题开展了研究。首先设计并完成了无缺陷、含预埋缺陷的帽形单筋板四点弯曲试验以表征加筋壁板典型区域的后屈曲失效;然后基于数值模拟方法,利用内聚力模型(CZM)对无缺陷和含预埋缺陷试件弯曲受载时的界面脱黏进行了渐进破坏分析。结果表明:采用cohesive单元和考虑厚度方向压缩影响的层间失效准则方法建立有限元模型可以很好地模拟复合材料加筋结构界面脱黏;凸缘-蒙皮预埋缺陷对帽形加筋壁板起裂载荷基本没有影响,筋条内角和填充区界面预埋缺陷会显著降低帽形加筋板的承载能力,但起始裂纹均发生在筋条内角和填充区的粘接界面。 展开更多
关键词 复合材料 内聚力模型 后屈曲 加筋壁板 界面脱黏
下载PDF
MONTE CARLO STUDY ON THE CRITICAL ADSORPTION POINT OF BONDFLUCTUATED POLYMER CHAINS TETHERED ON ADSORBING SURFACES
15
作者 陆文琴 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2009年第1期109-114,共6页
The behavior of three-dimensional bond fluctuation model chains tethered on an adsorbing fiat surface was simulated by the Monte Carlo method.The dependence of the number of surface contacts M on the interaction stren... The behavior of three-dimensional bond fluctuation model chains tethered on an adsorbing fiat surface was simulated by the Monte Carlo method.The dependence of the number of surface contacts M on the interaction strengthεand the chain length N was investigated by a finite-size scaling law M = N;[a;+a;N;κ+ O((N;κ);)]forεnear the critical adsorption pointε;,i.e.,κ=(ε-ε;)/ε;closes to 0.The critical adsorption point was estimated to beε;=0.93,and the exponentsφ= 0.49 and l/v= 0.57. 展开更多
关键词 Critical adsorption Polymer chain Bond fluctuation model SCALING Monte Carlo
下载PDF
Quantitative Interpretation of Polarization SFG Vibrational Spectra of Air/Methanol Interface
16
作者 Hui Wu Wen-kai Zhang +2 位作者 Wei Gan Zhi-feng Cui Hong-fei Wang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第3期187-189,共3页
Even though in IR and Raman spectra of liquid methanol there is always an apparent feature for the asymmetric stretching mode of the CH3 group around 2970 cm^-1, this feature has not been observed in the Sum Frequency... Even though in IR and Raman spectra of liquid methanol there is always an apparent feature for the asymmetric stretching mode of the CH3 group around 2970 cm^-1, this feature has not been observed in the Sum Frequency Generation Vibrational Spectroscopy (SFG-VS) in any polarizations from the air/methanol interface. Here we present a treatment based on a corrected bond additivity model to quantitatively interpret the SFG-VS of the air/methanol interface from the IR and Raman spectra of liquid methanol. 展开更多
关键词 Sum frequency generation Bond additivity model Raman polarizability
下载PDF
Magnetic phase diagrams of Fe–Mn–Al alloy on the Bethe lattice
17
作者 Erhan Albayrak 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期86-92,共7页
The magnetic behaviors of the Fe–Mn–Al alloy are simulated on the Bethe lattice by using a trimodal random bilinear exchange interaction(J) distribution in the Blume–Capel(BC) model. Ferromagnetic(J 〉 0) or ... The magnetic behaviors of the Fe–Mn–Al alloy are simulated on the Bethe lattice by using a trimodal random bilinear exchange interaction(J) distribution in the Blume–Capel(BC) model. Ferromagnetic(J 〉 0) or antiferromagnetic(J 〈 0)bonds or dilution of the bonds(J = 0) are assumed between the atoms with some probabilities. It is found that the secondor the first-order phase boundaries separate the ferromagnetic(F), antiferromagnetic(AF), paramagnetic(P), or spin-glass(SG) phases from the possible other one. In addition to the tricritical points, the special points at which the second- and the first-order and the spin-glass phase lines meet are also found. Very rich phase diagrams in agreement with the literature are obtained. 展开更多
关键词 bond dilution Bethe lattice bilinear interaction Blume–Capel model spin glass alloy
下载PDF
Oblique impact breakage unification of nonspherical particles using discrete element method
18
作者 Di Peng LiGe Wang +4 位作者 Yuquan Lin Chongqiang Zhu Xizhong Chen Zhihui Liu Ruihuan Ge 《Particuology》 SCIE EI CAS CSCD 2024年第7期61-71,共11页
Particle breakage commonly occurs during processing of particulate materials,but a mechanistic model of particle impact breakage is not fully established.This article presents oblique impact breakage characteristics o... Particle breakage commonly occurs during processing of particulate materials,but a mechanistic model of particle impact breakage is not fully established.This article presents oblique impact breakage characteristics of nonspherical particles using discrete element method(DEM)simulations.Three different particle shapes,i.e.spherical,cuboidal and cylindrical,are investigated.Constituent spheres are agglomerated with bridging bonds to model the breakage characteristics under impact conditions.The effect of agglomerate shapes on the breakage pattern,damage ratio,and fragment size distribution is fully investigated.By using a newly proposed oblique impact model,unified breakage master surfaces are theoretically constructed for all the particle shapes under oblique impact conditions.The developed approach can be applied to modelling particulate processes where nonspherical particles and oblique impact breakage are prevailing. 展开更多
关键词 Breakage master curve Nonspherical particle Oblique impact Equivalent velocity Discrete element method(DEM) Bonded contact model
原文传递
Stress Recovery Procedure for the Bonded Particle Model
19
作者 Ruoyu Guan Shean Bie Canpeng Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第3期356-368,共13页
In the simulation of discontinuous block systems,the discrete element method(DEM)has better computational efficiency and convergence than the finite element method(FEM).When several DEM particles are bonded together w... In the simulation of discontinuous block systems,the discrete element method(DEM)has better computational efficiency and convergence than the finite element method(FEM).When several DEM particles are bonded together with parallel bonds(the bonded particle model,BPM),various shapes and block fractures can be simulated.The main aim of the BPM is to simulate a continuous material in which the stress distribution is continuous.Since the existing stress result for a single particle is an average value over the particle’s area,stress results do not exist in the area between particles.In this paper,the stress value for a single two-dimensional DEM particle is deduced.A stress recovery procedure with a linear stress function for a triangular element generated by the centroids of three bonded particles is proposed.In this way,the recovered stress field for the whole mesh composed of all triangular elements is continuous.A stress gradient exists in the whole mesh.This can also provide more accurate stress values for judging a fracture inside a block.Symmetrical and asymmetrical models are simulated by the BPM and FEM.Similar to the FEM results,the recovered stress results for the BPM can describe the stress distribution in the simulated continuous blocks.For the model with the theoretical stress solution,the recovered result and the theoretical solution coincide well. 展开更多
关键词 Discrete element method Bonded particle model Stress recovery procedure Continuous stress field
原文传递
Kekulé-based Valence Bond Model. I. The Ground-state Properties of Conjugated π-Systems
20
作者 黎书华 马晶 江元生 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2002年第11期1168-1179,1125,共13页
The Kekulé-based valence bond (VB) method, in which the VB model is solved using covalent Kekulé structures as basis functions, is justified in the present work. This method is demonstrated to provide satisf... The Kekulé-based valence bond (VB) method, in which the VB model is solved using covalent Kekulé structures as basis functions, is justified in the present work. This method is demonstrated to provide satisfactory descriptions for resonance energies and bond lengths of benzenoid hydrocarbons, being in good agreement with SCF-MO and experimental results. In addition, an alternative way of discussing characters of localized substructures within a polycyclic benzenoid system is suggested based upon such simplified VB calculations. Finally, the symmetries of VB ground states for nonalternant conjugated systems are also illustrated to be obtainable through these calculations, presenting very useful information for understanding the chemical behaviors of some nonalternant conjugated molecules. 展开更多
关键词 valence bond model Kekulé structures benzenoid hydrocarbons nonalternant conjugated molecules
全文增补中
上一页 1 2 下一页 到第
使用帮助 返回顶部