BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To e...BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM.METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining,alizarin red S staining,quantitative real-time polymerase chain reaction,Western blot,and immunofluorescence.Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis.A bone defect model was established in T1DM rats.The model rats were then treated with ICA or placebo and micron-scale computed tomography,histomorphometry,histology,and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area.RESULTS ICA promoted bone marrow mesenchymal stem cell(BMSC)proliferation and osteogenic differentiation.The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers(alkaline phosphatase and osteocalcin)and angiogenesis-related markers(vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1)compared to the untreated group.ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs.In the bone defect model T1DM rats,ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation.Lastly,ICA effectively accelerated the rate of bone formation in the defect area.CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs.展开更多
Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced ...Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced image acquisition techniques,image processing,and computer-aided design methods has enabled the precise design and additive manufacturing of anatomically correct and patient-specific implants and scaffolds.However,these sophisticated techniques can be timeconsuming,labor-intensive,and expensive.Moreover,the necessary imaging and manufacturing equipment may not be readily available when urgent treatment is needed for trauma patients.In this study,a novel design and AM methods are proposed for the development of modular and customizable scaffold blocks that can be adapted to fit the bone defect area of a patient.These modular scaffold blocks can be combined to quickly form any patient-specific scaffold directly from two-dimensional(2D)medical images when the surgeon lacks access to a 3D printer or cannot wait for lengthy 3D imaging,modeling,and 3D printing during surgery.The proposed method begins with developing a bone surface-modeling algorithm that reconstructs a model of the patient’s bone from 2D medical image measurements without the need for expensive 3D medical imaging or segmentation.This algorithm can generate both patient-specific and average bone models.Additionally,a biomimetic continuous path planning method is developed for the additive manufacturing of scaffolds,allowing porous scaffold blocks with the desired biomechanical properties to be manufactured directly from 2D data or images.The algorithms are implemented,and the designed scaffold blocks are 3D printed using an extrusion-based AM process.Guidelines and instructions are also provided to assist surgeons in assembling scaffold blocks for the self-repair of patient-specific large bone defects.展开更多
BACKGROUND Aneurysmal bone cyst(ABC)is a benign cystic of unknown etiology,characterized by multiple chambers and a high recurrence rate.Current treatment options include vascular embolization,surgical excision,curett...BACKGROUND Aneurysmal bone cyst(ABC)is a benign cystic of unknown etiology,characterized by multiple chambers and a high recurrence rate.Current treatment options include vascular embolization,surgical excision,curettage with cavity filling,sclerosing agent injection into the cavity,radiotherapy,and systemic drug therapy.Among these,surgical excision and curettage are the preferred treatment modalities.However,when the cyst reaches a large size,extensive removal of diseased tissue during surgery can hinder bone healing.In our department,we treated a case of a large ABC at the distal end of the femur in a child using the Ilizarov technique.The tumor was completely excised,and reconstruction was achieved through autologous femoral bone transfer.The follow-up at two years post-surgery indicated good results without tumor recurrence,and the growth and development of the child were essentially unaffected.CASE SUMMARY An 11-year-old boy was presented with an accidental fracture of his right leg.Despite having been examined at other hospitals,he had not received treatment.Given the potential for significant bone defects and the difficulty of the surgery,our doctors opted to use the Ilizarov technique to minimize harm to the patient.Upon admission,the patient underwent a needle biopsy and complete tumor resection-the Ilizarov technique assisted in the transport and reconstruction of the autologous femoral bone.Postoperatively,the patient exhibited regular followups,during which bone transport was gradually performed,and the external fixation frame was removed on time.Follow-up X-rays of the right lower limb displayed no tumor recurrence,with a normal appearance.Bone formation at the cutting site was satisfactory,and the union of the bone ends indicated good healing.After two years of follow-up,the patient had essentially returned to normal.CONCLUSION We successfully applied the Ilizarov technique to treat ABC,reducing the financial burden of patients and the pain of multiple surgeries.In cases where significant bone defects occur,the Ilizarov technique has demonstrated satisfactory therapeutic outcomes.展开更多
Objective:To investigate the clinical effect of the guided bone regeneration(GBR)technique combined with temporary bridgework-guided gingival contouring in treating upper anterior tooth loss with labial bone defects.M...Objective:To investigate the clinical effect of the guided bone regeneration(GBR)technique combined with temporary bridgework-guided gingival contouring in treating upper anterior tooth loss with labial bone defects.Methods:From July 2023 to April 2024,80 patients with upper anterior tooth loss and labial bone defects were admitted to the hospital and selected as evaluation samples.They were divided into an observation group(n=40)and a control group(n=40)using a numerical table lottery scheme.The control group received treatment with the GBR technique,while the observation group received treatment with the GBR technique combined with temporary bridges to guide gingival contouring.The two groups were compared in terms of clinical red aesthetic scores(PES),labial alveolar bone density,labial bone wall thickness,gingival papillae,gingival margin levels,and patient satisfaction.Results:The PES scores of patients in the observation group were higher than those in the control group after surgery(P<0.05).The bone density of the labial alveolar bone and the thickness of the labial bone wall in the observation group were higher than those in the control group.The levels of gingival papillae and gingival margins were lower in the observation group after surgery(P<0.05).Additionally,patient satisfaction in the observation group was higher than in the control group(P<0.05).Conclusion:The GBR technique combined with temporary bridge-guided gingival contouring for treating upper anterior tooth loss with labial bone defects can improve the aesthetic effect of gingival soft tissue,increase alveolar bone density and the thickness of the labial bone wall,and enhance patient satisfaction.This approach is suitable for widespread application in healthcare institutions.展开更多
BACKGROUND Ilizarov non-free bone plasty is a method of distraction osteogenesis using the Ilizarov apparatus for external fixation which originated in Russia and was disseminated across the world. It has been used in...BACKGROUND Ilizarov non-free bone plasty is a method of distraction osteogenesis using the Ilizarov apparatus for external fixation which originated in Russia and was disseminated across the world. It has been used in long bone defect and nonunion management along with free vascularized grafting and induced membrane technique. However, the shortcomings and problems of these methods still remain the issues which restrict their overall use.AIM To study the recent available literature on the role of Ilizarov non-free bone plasty in long bone defect and nonunion management, its problems and the solutions to these problems in order to achieve better treatment outcomes.METHODS Three databases(Pub Med, Scopus, and Web of Science) were searched for literature sources on distraction osteogenesis, free vascularized grafting and induced membrane technique used in long bone defect and nonunion treatment within a five-year period(2015-2019). Full-text clinical articles in the English language were selected for analysis only if they contained treatment results,complications and described large patient samples(not less than ten cases for congenital, post-tumor resection cases or rare conditions, and more than 20 cases for the rest). Case reports were excluded.RESULTS Fifty full-text articles and reviews on distraction osteogenesis were chosen.Thirty-five clinical studies containing large series of patients treated with this method and problems with its outcome were analyzed. It was found that distraction osteogenesis techniques provide treatment for segmental bone defects and nonunion of the lower extremity in many clinical situations, especially in complex problems. The Ilizarov techniques treat the triad of problems simultaneously(bone loss, soft-tissue loss and infection). Management of tibial defects mostly utilizes the Ilizarov circular fixator. Monolateral fixators are preferable in the femur. The use of a ring fixator is recommended in patients with an infected tibial bone gap of more than 6 cm. High rates of successful treatment were reported by the authors that ranged from 77% to 100% and depended on the pathology and the type of Ilizarov technique used. Hybrid fixation and autogenous grafting are the most applicable solutions to avoid after-frame regenerate fracture or deformity and docking site nonunion.CONCLUSION The role of Ilizarov non-free bone plasty has not lost its significance in the treatment of segmental bone defects despite the shortcomings and treatment problems encountered.展开更多
The Ilizarov method is one of the current methods used in bone reconstruction.It originated in the middle of the past century and comprises a number of bone reconstruction techniques executed with a ring external fixa...The Ilizarov method is one of the current methods used in bone reconstruction.It originated in the middle of the past century and comprises a number of bone reconstruction techniques executed with a ring external fixator developed by Ilizarov GA.Its main merits are viable new bone formation through distraction osteogenesis,high union rates and functional use of the limb throughout the course of treatment.The study of the phenomenon of distraction osteogenesis induced by tension stress with the Ilizarov apparatus was the impetus for advancement in bone reconstruction surgery.Since then,the original method has been used along with a number of its modifications developed due to emergence of new fixation devices and techniques of their application such as hexapod external fixators and motorized intramedullary lengthening nails.They gave rise to a relatively new orthopedic subspecialty termed“limb lengthening and reconstruction surgery”.Based on a comprehensive literature search,we summarized the recent clinical practice and research in bone reconstruction by the Ilizarov method with a special focus on its modification and recognition by the world orthopedic community.The international influence of the Ilizarov method was reviewed in regard to the origin country of the authors and journal’s rating.The Ilizarov method and other techniques based on distraction osteogenesis have been used in many countries and on all populated continents.It proves its international significance and confirms the greatest contribution of Ilizarov GA to bone reconstruction surgery.展开更多
Complicated and large acetabular bone defects present the main challenges and difficulty in the revision of total hip arthroplasty(THA).This study aimed to explore the advantages of three-dimensional(3D)printing techn...Complicated and large acetabular bone defects present the main challenges and difficulty in the revision of total hip arthroplasty(THA).This study aimed to explore the advantages of three-dimensional(3D)printing technology in the reconstruction of such acetabular bone defects.We retrospectively analyzed the prognosis of four severe bone defects around the acetabulum in three patients who were treated using 3D printing technology.Reconstruction of bone defect by conventional methods was difficult in these patients.In this endeavor,we used radiographic methods,related computer software such as Materialise's interactive medical image control system and Siemens NX software,and actual surgical experience to estimate defect volume,prosthesis stability,and installation accuracy,respectively.Moreover,a Harris hip score was obtained to evaluate limb function.It was found that bone defects could be adequately reconstructed using a 3D printing prosthesis,and its stability was reliable.The Harris hip score indicated a very good functional recovery in all three patients.In conclusion,3D printing technology had a good therapeutic effect on both complex and large bone defects in the revision of THA.It was able to achieve good curative effects in patients with large bone defects.展开更多
Summary: This study evaluated the clinical effect of impaction bone graft and distal press-fit fixation for the reconstruction of severe femoral bone defect in revision total hip arthroplasty. A total of 234 patients...Summary: This study evaluated the clinical effect of impaction bone graft and distal press-fit fixation for the reconstruction of severe femoral bone defect in revision total hip arthroplasty. A total of 234 patients (involving 236 hips) with Paprosky III and 1V femoral bone defects were treated with the revision total hip arthroplasty from June 1998 to Aug. 2006. Impaction bone graft technique was used for 112 hips, with allogeneic freeze-dried bone as bone graft and SP II as prosthesis. With 124 hips, modular distal press-fit fixation and tapered femoral stem (MP stem) were employed. After the operation, the subjects were followed up on regular basis and results were assessed by using the Harris Hip Score (HHS) and 12-item Short Form Health Survey (SF-12). Radiolucence, subsidence and loosening were observed and complications, including infection, fracture, dislocation etc. were recorded. A 6-14-year follow-up showed that prostheses failed, due to infection, in 4 patients of impaction bone graft group and that 6 patients in the press-fit fixation group experienced prosthesis failure, with the survival rates for the two techniques being 96.43% and 95.16%, respectively. One-way ANOVA showed that prosthesis survival was significantly associated with surgery-related complications (P〈0.05) and was not related to the type of the bone defects (P〉0.05). The rate of complications bore significant association with the type of bone defects in the two groups (P〈0.05). Our study showed that the two revision methods could achieve satisfactory mid-term and long-term results for the reconstruction of severe bone defects. It is of great significance for attaining high prosthesis survival rate to select suitable operation on the basis of the type of bone defect. Careful operative manipulation and post-operative rehabilitation aimed at reducing complications are also important.展开更多
TGF-β is a multifunctional cytokine that regulates many aspects of cellular function, including periosteal mesenchymal cell proliferation, differentiation. This experiment is to study its effects on bone defect repai...TGF-β is a multifunctional cytokine that regulates many aspects of cellular function, including periosteal mesenchymal cell proliferation, differentiation. This experiment is to study its effects on bone defect repair. A rabbit radial bone defect model was used to evaluate the effect of TGF-β, which was extracted and purified from bovine blood platelets, on the healing of a large segmental osteoperiosteal defect. A 1. 5-centimeter segmental defect was created in the mid-upper part of the radial shaft of adult rabbits. The defect was filled with implant containing TGF-β that consisted of carrier and bovine TGF-β. Limbs served as controls received carrier alone. The defectswere examined radiographically and histologically at 4, 8,12 , 16 and 20 weeks after implantation. The results showed that in TGF-β implant group . the defect areas at 12 weeks post operation were bridged by uniform new bone and the cut ends of cortex could not be seen;while in control group, the defects remained clear. Only a small amount of new bone formed as a cap on the cut bone ends. In the experimental group, new lamellar and woven bone formed in continuity with the cut ends of the cortex. An early medullar canal appears to be forming and contained normal-appearancing marrow elements; while the control group displayed entirely fibrous tissue within the defect site. Remnants of the cancellous bone carrier were observed in the control specimen. These data demonstrate that exogenous TGF-β initiate osteogenesis and stimulate the bone defects repair in animal model.展开更多
To investigate the feasibility of implanting the biocomposite of calcium phosphate cement(CPC)/polylactic acid-polyglycolic acid(PLGA) into animals for bone defects repairing,the biocomposite of CPC/PLGA was prepared ...To investigate the feasibility of implanting the biocomposite of calcium phosphate cement(CPC)/polylactic acid-polyglycolic acid(PLGA) into animals for bone defects repairing,the biocomposite of CPC/PLGA was prepared and its setting time,compressive strength,elastic modulus,pH values,phase composition of the samples,degradability and biocompatibility in vitro were tested.The above-mentioned composite implanted with bone marrow stromal cells was used to repair defects of the radius in rabbits.Osteogenesis was histomorphologically observed by using an electron-microscope.The results show that compared with the CPC,the physical and chemical properties of CPC/PLGA composite have some differences in which CPC/PLGA composite has better biological properties.The CPC/PLGA composite combined with seed cells is superior to the control in terms of the amount of new bones formed after CPC/PLGA composite is implanted into the rabbits,as well as the speed of repairing bone defects.The results suggest that the constructed CPC/PLGA composite basically meets the requirements of tissue engineering scaffold materials and that the CPC/PLGA composite implanted with bone marrow stromal cells may be a new artificial bone material for repairing bone defects because it can promote the growth of bone tissues.展开更多
Objective:To study the possibility of natural hydroxyapatite/chitosan composite on repairing bone defects. Methods:We developed a natural hydroxyapatite/chitosan composite that could be molded into any desired shape...Objective:To study the possibility of natural hydroxyapatite/chitosan composite on repairing bone defects. Methods:We developed a natural hydroxyapatite/chitosan composite that could be molded into any desired shape. The powder component consists of natural hydroxyapatite, which is epurated from bone of pigs. The liquid component consists of malic acid and chitosan. Operations were performed on the left tibias of 15 white rabbits to create two square bone defects. One of the defects was reconstructed with the composite, while the other was not repaired and used as a blank control. Three of the animals were killed at the end of 2 weeks, 4 weeks, 8 weeks, 12 weeks and 16 weeks respectively and implants were evaluated anatomically and histologically. Results:No apparent rejection reaction was found, except for a mild inflammatory infiltration observed 2 weeks after surgery. Fibrous tissue became thinner 2 -8 weeks after surgery and bony connections were detected 12 weeks after surgery. The new bone was the same as the recipient bone by the 16th postoperative week. Conclusion:The hydroxyapatite/chitosan composite has good biocompatibility and osteoconduction. It is a potential repairing material for clinical application.展开更多
Objective:To report the clinical outcome of repairing massive bone defects biologically in limbs by homeochronous using structural bone allografts with intramedullary vascularized fibular autografts. Methods: From Jan...Objective:To report the clinical outcome of repairing massive bone defects biologically in limbs by homeochronous using structural bone allografts with intramedullary vascularized fibular autografts. Methods: From January 2001 to December 2005, large bone defects in 19 patients (11 men and 8 women, aged 6 to 35 years) were repaired by structural bone allografts with intramedullary vascularized fibular autografts in the homeochronous period. The range of the length of bone defects was 11 to 25 cm (mean 17.6 cm), length of vascularized free fibular was 15 to 29 cm (mean 19.2 cm), length of massive bone allografts was 11 to 24 cm (mean 17.1 cm). Location of massive bone defects was in humerus(n=1), in femur(n=9) and in tibia(n=9), respectively. Results: After 9 to 69 months (mean 38.2 months) follow-up, wounds of donor and recipient sites were healed inⅠstage, monitoring-flaps were alive, eject reaction of massive bone allografts were slight, no complications in donor limbs. Fifteen patients had the evidence of radiographic union 3 to 6 months after surgery, 3 cases united 8 months later, and the remained one case of malignant synovioma in distal femur recurred and amputated the leg 2.5 months, postoperatively. Five patients had been removed internal fixation, complete bone unions were found one year postoperatively. None of massive bone allografts were absorbed or collapsed at last follow-up. Conclusion: The homeochronous usage of structural bone allograft with an intramedullary vascularized fibular autograft can biologically obtain a structure with the immediate mechanical strength of the allograft, a potential result of revascularization through the vascularized fibula, and accelerate bone union not only between fibular autograft and the host but also between massive bone allograft and the host.展开更多
BACKGROUND Continuous severe horizontal bone defect is common in the aesthetic maxillary anterior area,and presents a major challenge in implant dentistry and requires predictable bone augmentation to increase the wid...BACKGROUND Continuous severe horizontal bone defect is common in the aesthetic maxillary anterior area,and presents a major challenge in implant dentistry and requires predictable bone augmentation to increase the width of the alveolar bone.CASE SUMMARY A 24-year-old man,with a history of well-controlled IgA nephropathy,presented to the Dentistry Department of our hospital complaining of missing his right maxillary anterior teeth 1 mo ago.Severe horizontal alveolar bone defects at sites of teeth 12,13 and 14 were diagnosed.A modified guided bone regeneration surgical approach stabilizing the absorbable collagen membrane and particulate graft materials by periosteal diagonal mattress suture(PDMS)combined with four corner pins was used for this severe continuous horizontal bone defect.The outcome revealed that the newly formed alveolar ridge dimension increased from 0.72 mm to 11.55 mm horizontally 10 mo postoperatively,with no adverse events.The implant surgery was successfully performed.CONCLUSION This case highlights that PDMS combined with four corner pins is feasible to maintain the space and stabilize the graft and membranes in severe continuous horizontal bone defect.展开更多
Compared with non-degradable materials,biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects,and have attracted extensive attention from researchers.In the treatment of...Compared with non-degradable materials,biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects,and have attracted extensive attention from researchers.In the treatment of bone defects,scaffolds made of biodegradable materials can provide a crawling bridge for new bone tissue in the gap and a platform for cells and growth factors to play a physiological role,which will eventually be degraded and absorbed in the body and be replaced by the new bone tissue.Traditional biodegradable materials include polymers,ceramics and metals,which have been used in bone defect repairing for many years.Although these materials have more or fewer shortcomings,they are still the cornerstone of our development of a new generation of degradable materials.With the rapid development of modern science and technology,in the 21 st century,more and more kinds of new biodegradable materials emerge in endlessly,such as new intelligent micro-nano materials and cell-based products.At the same time,there are many new fabrication technologies of improving biodegradable materials,such as modular fabrication,3 D and 4 D printing,interface reinforcement and nanotechnology.This review will introduce various kinds of biodegradable materials commonly used in bone defect repairing,especially the newly emerging materials and their fabrication technology in recent years,and look forward to the future research direction,hoping to provide researchers in the field with some inspiration and reference.展开更多
BACKGROUND The odontogenic jaw cyst is a cavity containing liquid,semifluid or gaseous components,with the development of the disease.In recent years,with the rapid development of oral materials and the transformation...BACKGROUND The odontogenic jaw cyst is a cavity containing liquid,semifluid or gaseous components,with the development of the disease.In recent years,with the rapid development of oral materials and the transformation of treatment of jaw cysts,more options are available for treatment of postoperative bone defect of jaw cysts.Guided bone regeneration(GBR)places biomaterials in the bone defect,and then uses biofilm to separate the proliferative soft tissue and the slow-growing bone tissue to maintain the space for bone regeneration,which is widely used in the field of implantology.AIM To observe the clinical effect of GBR in repairing bone defect after enucleation of small and medium-sized odontogenic jaw cysts.METHODS From June 2018 to September 2020,13 patients(7 male,6 female)with odontogenic jaw cysts were treated in the Department of Oral Surgery,Ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine.Adults without hypertension,heart disease,diabetes or other systemic diseases were selected.The diagnosis was based on the final pathological results:11 cases were diagnosed as apical cysts,one as primordial cyst,and one as dentigerous cyst.The lesions were located in the maxilla in seven cases,and in the mandible in six cases.All cases were treated with the same method of enucleation combined with GBR.RESULTS Three to four months after the operation,the boundary between the implant site and the surrounding normal stroma was not obvious in patients with small-sized odontogenic jaw cysts.The patients with tooth defects were treated with implant after 6 mo.For the patients with medium-sized odontogenic jaw cysts,the density of the center of the implant area was close to the normal mass at 6 mo after surgery,and there was a clear boundary between the periphery of the implant area and the normal mass.The boundary between the periphery of the implant area and the normal mass was blurred at 8-9 mo after surgery.Patients with tooth defects were treated with implants at>6 mo after the operation.CONCLUSION Enucleation combined with guided bone regeneration in small and medium-sized odontogenic jaw cysts can shorten the time of osteogenesis,increase the amount of new bone formation,reduce complications,and improve quality of life.展开更多
BACKGROUND Hip revision surgery is the final treatment option for the failure of artificial hip joints, but it is more difficult than the initial operation. For patients with hip joint loosening around the prosthesis ...BACKGROUND Hip revision surgery is the final treatment option for the failure of artificial hip joints, but it is more difficult than the initial operation. For patients with hip joint loosening around the prosthesis combined with large inflammatory pseudotumours and large segment bone defects, hip revision is even more difficult, and clinical reports are rare.CASE SUMMARY Male, 59 years old. The patient underwent left hip replacement 35 years ago and was now admitted to hospital due to massive masses in the left thigh, shortening of the left lower extremity, and pain and lameness of the left hip joint. X-ray, computed tomography and magnetic resonance imaging revealed prosthesis loosening, left acetabular bone defect(Parprosky IIIB type), and a bone defect of the left proximal femur(Parprosky IIIA type). Inflammatory pseudotumours were seen in the left hip and left thigh. Hip revision surgery was performed using a 3Dprinted custom acetabular prosthesis was used for hip revision surgery, which was produced by Arcam Electron Beam Melting system with Electron Beam Melting technology. The operation was successful, and the patient was followed up regularly after the operation. The custom-made acetabular prosthesis was well matched, the inflammatory pseudotumour was completely removed, the postoperative hip prosthesis was stable, and the old greater trochanter fracture was well reduced and fixed. The patient was partially weight-bearing with crutches 3 mo after the operation and walked with full weight-bearing after 6 mo. The hip prosthesis was stable, and there was no recurrence of inflammatory pseudotumours at the last follow-up. The Visual Analogue Scale was 3, and the Harris hip score was 90.CONCLUSION The use of 3D-printed personalized custom prostheses for complex hip revision surgery has satisfactory surgical results and has great clinical application value.展开更多
This paper reports the results of 24 cases of bone defect resulting from bone tumor or tumor condition excision, and of posterior spinal fusion, treated by human bone matrix gelatin. The success rate of bone defect re...This paper reports the results of 24 cases of bone defect resulting from bone tumor or tumor condition excision, and of posterior spinal fusion, treated by human bone matrix gelatin. The success rate of bone defect repair and spinal fusion is 91. 67 %. The results suggest that human bone matrix gelatin has. excellent osteoinductive effect and is ideal substitute for bone autografts.展开更多
Bone wound healing is a highly dynamic and precisely controlled process through which damaged bone undergoes repair and complete regeneration. External factors can alter this process, leading to delayed or failed bone...Bone wound healing is a highly dynamic and precisely controlled process through which damaged bone undergoes repair and complete regeneration. External factors can alter this process, leading to delayed or failed bone wound healing. The findings of recent studies suggest that the use of selective serotonin reuptake inhibitors(SSRIs) can reduce bone mass, precipitate osteoporotic fractures and increase the rate of dental implant failure. With 10% of Americans prescribed antidepressants, the potential of SSRIs to impair bone healing may adversely affect millions of patients’ ability to heal after sustaining trauma. Here, we investigate the effect of the SSRI sertraline on bone healing through pre-treatment with(10 mg·kg-1sertraline in drinking water, n = 26) or without(control, n = 30) SSRI followed by the creation of a 5-mm calvarial defect. Animals were randomized into three surgical groups:(a) empty/sham,(b) implanted with a DermaMatrix scaffold soak-loaded with sterile PBS or(c) DermaMatrix soak-loaded with542.5 ng BMP2. SSRI exposure continued until sacrifice in the exposed groups at 4 weeks after surgery. Sertraline exposure resulted in decreased bone healing with significant decreases in trabecular thickness, trabecular number and osteoclast dysfunction while significantly increasing mature collagen fiber formation. These findings indicate that sertraline exposure can impair bone wound healing through disruption of bone repair and regeneration while promoting or defaulting to scar formation within the defect site.展开更多
The stability parameters of implants (ITV, ISQ & PTV) according to different sizes of controlled bone defects made in implant osteotomies were analyzed and the correlation among the three kinds of implant stability...The stability parameters of implants (ITV, ISQ & PTV) according to different sizes of controlled bone defects made in implant osteotomies were analyzed and the correlation among the three kinds of implant stability parameters was tested in this study. 45 tapped screw-type dental implants were inserted in three types of implant osteotomies made in 8 fresh-frozen pig femoral bones: Typel - without coronal bone defect, Type2 - with 3 mm coronal bone defects, and Type3 - with 6 mm coronal bone defects. The insertion torque values, ISQ & PTV of implants were measured and analyzed statistically. It is concluded that the circumferential coronal bone defects statistically influence the primary stability of implants; ITV, ISQ and PTV are suitable and available to detect the peri-implant coronal bone defects in 3 mm increments, and ITV and PTV are more sensitive to coronal cortical bone loss. There was a strong correlation between ITV and ISQ.展开更多
Because of its simplicity,reliability,and replicability,the Masquelet induced membrane technique(IMT)has become one of the preferred methods for critical bone defect reconstruction in extremities.Although it is now us...Because of its simplicity,reliability,and replicability,the Masquelet induced membrane technique(IMT)has become one of the preferred methods for critical bone defect reconstruction in extremities.Although it is now used worldwide,few studies have been published about IMT in military practice.Bone reconstruction is particularly challenging in this context of care due to extensive soft-tissue injury,early wound infection,and even delayed management in austere conditions.Based on our clinical expertise,recent research,and a literature analysis,this narrative review provides an overview of the IMT application to combat-related bone defects.It presents technical specificities and future developments aiming to optimize IMT outcomes,including for the management of massive multi-tissue defects or bone reconstruction performed in the field with limited resources.展开更多
基金Supported by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation,No.GZC20231088President Foundation of The Third Affiliated Hospital of Southern Medical University,China,No.YP202210.
文摘BACKGROUND Icariin(ICA),a natural flavonoid compound monomer,has multiple pharmacological activities.However,its effect on bone defect in the context of type 1 diabetes mellitus(T1DM)has not yet been examined.AIM To explore the role and potential mechanism of ICA on bone defect in the context of T1DM.METHODS The effects of ICA on osteogenesis and angiogenesis were evaluated by alkaline phosphatase staining,alizarin red S staining,quantitative real-time polymerase chain reaction,Western blot,and immunofluorescence.Angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis.A bone defect model was established in T1DM rats.The model rats were then treated with ICA or placebo and micron-scale computed tomography,histomorphometry,histology,and sequential fluorescent labeling were used to evaluate the effect of ICA on bone formation in the defect area.RESULTS ICA promoted bone marrow mesenchymal stem cell(BMSC)proliferation and osteogenic differentiation.The ICA treated-BMSCs showed higher expression levels of osteogenesis-related markers(alkaline phosphatase and osteocalcin)and angiogenesis-related markers(vascular endothelial growth factor A and platelet endothelial cell adhesion molecule 1)compared to the untreated group.ICA was also found to induce osteogenesis-angiogenesis coupling of BMSCs.In the bone defect model T1DM rats,ICA facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation.Lastly,ICA effectively accelerated the rate of bone formation in the defect area.CONCLUSION ICA was able to accelerate bone regeneration in a T1DM rat model by inducing osteogenesis-angiogenesis coupling of BMSCs.
文摘Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced image acquisition techniques,image processing,and computer-aided design methods has enabled the precise design and additive manufacturing of anatomically correct and patient-specific implants and scaffolds.However,these sophisticated techniques can be timeconsuming,labor-intensive,and expensive.Moreover,the necessary imaging and manufacturing equipment may not be readily available when urgent treatment is needed for trauma patients.In this study,a novel design and AM methods are proposed for the development of modular and customizable scaffold blocks that can be adapted to fit the bone defect area of a patient.These modular scaffold blocks can be combined to quickly form any patient-specific scaffold directly from two-dimensional(2D)medical images when the surgeon lacks access to a 3D printer or cannot wait for lengthy 3D imaging,modeling,and 3D printing during surgery.The proposed method begins with developing a bone surface-modeling algorithm that reconstructs a model of the patient’s bone from 2D medical image measurements without the need for expensive 3D medical imaging or segmentation.This algorithm can generate both patient-specific and average bone models.Additionally,a biomimetic continuous path planning method is developed for the additive manufacturing of scaffolds,allowing porous scaffold blocks with the desired biomechanical properties to be manufactured directly from 2D data or images.The algorithms are implemented,and the designed scaffold blocks are 3D printed using an extrusion-based AM process.Guidelines and instructions are also provided to assist surgeons in assembling scaffold blocks for the self-repair of patient-specific large bone defects.
文摘BACKGROUND Aneurysmal bone cyst(ABC)is a benign cystic of unknown etiology,characterized by multiple chambers and a high recurrence rate.Current treatment options include vascular embolization,surgical excision,curettage with cavity filling,sclerosing agent injection into the cavity,radiotherapy,and systemic drug therapy.Among these,surgical excision and curettage are the preferred treatment modalities.However,when the cyst reaches a large size,extensive removal of diseased tissue during surgery can hinder bone healing.In our department,we treated a case of a large ABC at the distal end of the femur in a child using the Ilizarov technique.The tumor was completely excised,and reconstruction was achieved through autologous femoral bone transfer.The follow-up at two years post-surgery indicated good results without tumor recurrence,and the growth and development of the child were essentially unaffected.CASE SUMMARY An 11-year-old boy was presented with an accidental fracture of his right leg.Despite having been examined at other hospitals,he had not received treatment.Given the potential for significant bone defects and the difficulty of the surgery,our doctors opted to use the Ilizarov technique to minimize harm to the patient.Upon admission,the patient underwent a needle biopsy and complete tumor resection-the Ilizarov technique assisted in the transport and reconstruction of the autologous femoral bone.Postoperatively,the patient exhibited regular followups,during which bone transport was gradually performed,and the external fixation frame was removed on time.Follow-up X-rays of the right lower limb displayed no tumor recurrence,with a normal appearance.Bone formation at the cutting site was satisfactory,and the union of the bone ends indicated good healing.After two years of follow-up,the patient had essentially returned to normal.CONCLUSION We successfully applied the Ilizarov technique to treat ABC,reducing the financial burden of patients and the pain of multiple surgeries.In cases where significant bone defects occur,the Ilizarov technique has demonstrated satisfactory therapeutic outcomes.
文摘Objective:To investigate the clinical effect of the guided bone regeneration(GBR)technique combined with temporary bridgework-guided gingival contouring in treating upper anterior tooth loss with labial bone defects.Methods:From July 2023 to April 2024,80 patients with upper anterior tooth loss and labial bone defects were admitted to the hospital and selected as evaluation samples.They were divided into an observation group(n=40)and a control group(n=40)using a numerical table lottery scheme.The control group received treatment with the GBR technique,while the observation group received treatment with the GBR technique combined with temporary bridges to guide gingival contouring.The two groups were compared in terms of clinical red aesthetic scores(PES),labial alveolar bone density,labial bone wall thickness,gingival papillae,gingival margin levels,and patient satisfaction.Results:The PES scores of patients in the observation group were higher than those in the control group after surgery(P<0.05).The bone density of the labial alveolar bone and the thickness of the labial bone wall in the observation group were higher than those in the control group.The levels of gingival papillae and gingival margins were lower in the observation group after surgery(P<0.05).Additionally,patient satisfaction in the observation group was higher than in the control group(P<0.05).Conclusion:The GBR technique combined with temporary bridge-guided gingival contouring for treating upper anterior tooth loss with labial bone defects can improve the aesthetic effect of gingival soft tissue,increase alveolar bone density and the thickness of the labial bone wall,and enhance patient satisfaction.This approach is suitable for widespread application in healthcare institutions.
文摘BACKGROUND Ilizarov non-free bone plasty is a method of distraction osteogenesis using the Ilizarov apparatus for external fixation which originated in Russia and was disseminated across the world. It has been used in long bone defect and nonunion management along with free vascularized grafting and induced membrane technique. However, the shortcomings and problems of these methods still remain the issues which restrict their overall use.AIM To study the recent available literature on the role of Ilizarov non-free bone plasty in long bone defect and nonunion management, its problems and the solutions to these problems in order to achieve better treatment outcomes.METHODS Three databases(Pub Med, Scopus, and Web of Science) were searched for literature sources on distraction osteogenesis, free vascularized grafting and induced membrane technique used in long bone defect and nonunion treatment within a five-year period(2015-2019). Full-text clinical articles in the English language were selected for analysis only if they contained treatment results,complications and described large patient samples(not less than ten cases for congenital, post-tumor resection cases or rare conditions, and more than 20 cases for the rest). Case reports were excluded.RESULTS Fifty full-text articles and reviews on distraction osteogenesis were chosen.Thirty-five clinical studies containing large series of patients treated with this method and problems with its outcome were analyzed. It was found that distraction osteogenesis techniques provide treatment for segmental bone defects and nonunion of the lower extremity in many clinical situations, especially in complex problems. The Ilizarov techniques treat the triad of problems simultaneously(bone loss, soft-tissue loss and infection). Management of tibial defects mostly utilizes the Ilizarov circular fixator. Monolateral fixators are preferable in the femur. The use of a ring fixator is recommended in patients with an infected tibial bone gap of more than 6 cm. High rates of successful treatment were reported by the authors that ranged from 77% to 100% and depended on the pathology and the type of Ilizarov technique used. Hybrid fixation and autogenous grafting are the most applicable solutions to avoid after-frame regenerate fracture or deformity and docking site nonunion.CONCLUSION The role of Ilizarov non-free bone plasty has not lost its significance in the treatment of segmental bone defects despite the shortcomings and treatment problems encountered.
文摘The Ilizarov method is one of the current methods used in bone reconstruction.It originated in the middle of the past century and comprises a number of bone reconstruction techniques executed with a ring external fixator developed by Ilizarov GA.Its main merits are viable new bone formation through distraction osteogenesis,high union rates and functional use of the limb throughout the course of treatment.The study of the phenomenon of distraction osteogenesis induced by tension stress with the Ilizarov apparatus was the impetus for advancement in bone reconstruction surgery.Since then,the original method has been used along with a number of its modifications developed due to emergence of new fixation devices and techniques of their application such as hexapod external fixators and motorized intramedullary lengthening nails.They gave rise to a relatively new orthopedic subspecialty termed“limb lengthening and reconstruction surgery”.Based on a comprehensive literature search,we summarized the recent clinical practice and research in bone reconstruction by the Ilizarov method with a special focus on its modification and recognition by the world orthopedic community.The international influence of the Ilizarov method was reviewed in regard to the origin country of the authors and journal’s rating.The Ilizarov method and other techniques based on distraction osteogenesis have been used in many countries and on all populated continents.It proves its international significance and confirms the greatest contribution of Ilizarov GA to bone reconstruction surgery.
基金This work is supported by National Key Research and Development Program of China(2016YFC1100600)the National Natural Science Foundation of China(81972058 and 81902194)the Multicenter Clinical Research Project of Shanghai Jiao Tong University School of Medicine(DLY201506).
文摘Complicated and large acetabular bone defects present the main challenges and difficulty in the revision of total hip arthroplasty(THA).This study aimed to explore the advantages of three-dimensional(3D)printing technology in the reconstruction of such acetabular bone defects.We retrospectively analyzed the prognosis of four severe bone defects around the acetabulum in three patients who were treated using 3D printing technology.Reconstruction of bone defect by conventional methods was difficult in these patients.In this endeavor,we used radiographic methods,related computer software such as Materialise's interactive medical image control system and Siemens NX software,and actual surgical experience to estimate defect volume,prosthesis stability,and installation accuracy,respectively.Moreover,a Harris hip score was obtained to evaluate limb function.It was found that bone defects could be adequately reconstructed using a 3D printing prosthesis,and its stability was reliable.The Harris hip score indicated a very good functional recovery in all three patients.In conclusion,3D printing technology had a good therapeutic effect on both complex and large bone defects in the revision of THA.It was able to achieve good curative effects in patients with large bone defects.
基金supported by a grant from the National High Technology Research and Development Program of China(863 Program)(NO.2011AA030101)
文摘Summary: This study evaluated the clinical effect of impaction bone graft and distal press-fit fixation for the reconstruction of severe femoral bone defect in revision total hip arthroplasty. A total of 234 patients (involving 236 hips) with Paprosky III and 1V femoral bone defects were treated with the revision total hip arthroplasty from June 1998 to Aug. 2006. Impaction bone graft technique was used for 112 hips, with allogeneic freeze-dried bone as bone graft and SP II as prosthesis. With 124 hips, modular distal press-fit fixation and tapered femoral stem (MP stem) were employed. After the operation, the subjects were followed up on regular basis and results were assessed by using the Harris Hip Score (HHS) and 12-item Short Form Health Survey (SF-12). Radiolucence, subsidence and loosening were observed and complications, including infection, fracture, dislocation etc. were recorded. A 6-14-year follow-up showed that prostheses failed, due to infection, in 4 patients of impaction bone graft group and that 6 patients in the press-fit fixation group experienced prosthesis failure, with the survival rates for the two techniques being 96.43% and 95.16%, respectively. One-way ANOVA showed that prosthesis survival was significantly associated with surgery-related complications (P〈0.05) and was not related to the type of the bone defects (P〉0.05). The rate of complications bore significant association with the type of bone defects in the two groups (P〈0.05). Our study showed that the two revision methods could achieve satisfactory mid-term and long-term results for the reconstruction of severe bone defects. It is of great significance for attaining high prosthesis survival rate to select suitable operation on the basis of the type of bone defect. Careful operative manipulation and post-operative rehabilitation aimed at reducing complications are also important.
文摘TGF-β is a multifunctional cytokine that regulates many aspects of cellular function, including periosteal mesenchymal cell proliferation, differentiation. This experiment is to study its effects on bone defect repair. A rabbit radial bone defect model was used to evaluate the effect of TGF-β, which was extracted and purified from bovine blood platelets, on the healing of a large segmental osteoperiosteal defect. A 1. 5-centimeter segmental defect was created in the mid-upper part of the radial shaft of adult rabbits. The defect was filled with implant containing TGF-β that consisted of carrier and bovine TGF-β. Limbs served as controls received carrier alone. The defectswere examined radiographically and histologically at 4, 8,12 , 16 and 20 weeks after implantation. The results showed that in TGF-β implant group . the defect areas at 12 weeks post operation were bridged by uniform new bone and the cut ends of cortex could not be seen;while in control group, the defects remained clear. Only a small amount of new bone formed as a cap on the cut bone ends. In the experimental group, new lamellar and woven bone formed in continuity with the cut ends of the cortex. An early medullar canal appears to be forming and contained normal-appearancing marrow elements; while the control group displayed entirely fibrous tissue within the defect site. Remnants of the cancellous bone carrier were observed in the control specimen. These data demonstrate that exogenous TGF-β initiate osteogenesis and stimulate the bone defects repair in animal model.
基金Projects(30370412, 30670558) supported by the National Natural Science Foundation of China
文摘To investigate the feasibility of implanting the biocomposite of calcium phosphate cement(CPC)/polylactic acid-polyglycolic acid(PLGA) into animals for bone defects repairing,the biocomposite of CPC/PLGA was prepared and its setting time,compressive strength,elastic modulus,pH values,phase composition of the samples,degradability and biocompatibility in vitro were tested.The above-mentioned composite implanted with bone marrow stromal cells was used to repair defects of the radius in rabbits.Osteogenesis was histomorphologically observed by using an electron-microscope.The results show that compared with the CPC,the physical and chemical properties of CPC/PLGA composite have some differences in which CPC/PLGA composite has better biological properties.The CPC/PLGA composite combined with seed cells is superior to the control in terms of the amount of new bones formed after CPC/PLGA composite is implanted into the rabbits,as well as the speed of repairing bone defects.The results suggest that the constructed CPC/PLGA composite basically meets the requirements of tissue engineering scaffold materials and that the CPC/PLGA composite implanted with bone marrow stromal cells may be a new artificial bone material for repairing bone defects because it can promote the growth of bone tissues.
基金supported by Science and Technology Projects Fund of Nanjing Medical University(NY0522)
文摘Objective:To study the possibility of natural hydroxyapatite/chitosan composite on repairing bone defects. Methods:We developed a natural hydroxyapatite/chitosan composite that could be molded into any desired shape. The powder component consists of natural hydroxyapatite, which is epurated from bone of pigs. The liquid component consists of malic acid and chitosan. Operations were performed on the left tibias of 15 white rabbits to create two square bone defects. One of the defects was reconstructed with the composite, while the other was not repaired and used as a blank control. Three of the animals were killed at the end of 2 weeks, 4 weeks, 8 weeks, 12 weeks and 16 weeks respectively and implants were evaluated anatomically and histologically. Results:No apparent rejection reaction was found, except for a mild inflammatory infiltration observed 2 weeks after surgery. Fibrous tissue became thinner 2 -8 weeks after surgery and bony connections were detected 12 weeks after surgery. The new bone was the same as the recipient bone by the 16th postoperative week. Conclusion:The hydroxyapatite/chitosan composite has good biocompatibility and osteoconduction. It is a potential repairing material for clinical application.
文摘Objective:To report the clinical outcome of repairing massive bone defects biologically in limbs by homeochronous using structural bone allografts with intramedullary vascularized fibular autografts. Methods: From January 2001 to December 2005, large bone defects in 19 patients (11 men and 8 women, aged 6 to 35 years) were repaired by structural bone allografts with intramedullary vascularized fibular autografts in the homeochronous period. The range of the length of bone defects was 11 to 25 cm (mean 17.6 cm), length of vascularized free fibular was 15 to 29 cm (mean 19.2 cm), length of massive bone allografts was 11 to 24 cm (mean 17.1 cm). Location of massive bone defects was in humerus(n=1), in femur(n=9) and in tibia(n=9), respectively. Results: After 9 to 69 months (mean 38.2 months) follow-up, wounds of donor and recipient sites were healed inⅠstage, monitoring-flaps were alive, eject reaction of massive bone allografts were slight, no complications in donor limbs. Fifteen patients had the evidence of radiographic union 3 to 6 months after surgery, 3 cases united 8 months later, and the remained one case of malignant synovioma in distal femur recurred and amputated the leg 2.5 months, postoperatively. Five patients had been removed internal fixation, complete bone unions were found one year postoperatively. None of massive bone allografts were absorbed or collapsed at last follow-up. Conclusion: The homeochronous usage of structural bone allograft with an intramedullary vascularized fibular autograft can biologically obtain a structure with the immediate mechanical strength of the allograft, a potential result of revascularization through the vascularized fibula, and accelerate bone union not only between fibular autograft and the host but also between massive bone allograft and the host.
文摘BACKGROUND Continuous severe horizontal bone defect is common in the aesthetic maxillary anterior area,and presents a major challenge in implant dentistry and requires predictable bone augmentation to increase the width of the alveolar bone.CASE SUMMARY A 24-year-old man,with a history of well-controlled IgA nephropathy,presented to the Dentistry Department of our hospital complaining of missing his right maxillary anterior teeth 1 mo ago.Severe horizontal alveolar bone defects at sites of teeth 12,13 and 14 were diagnosed.A modified guided bone regeneration surgical approach stabilizing the absorbable collagen membrane and particulate graft materials by periosteal diagonal mattress suture(PDMS)combined with four corner pins was used for this severe continuous horizontal bone defect.The outcome revealed that the newly formed alveolar ridge dimension increased from 0.72 mm to 11.55 mm horizontally 10 mo postoperatively,with no adverse events.The implant surgery was successfully performed.CONCLUSION This case highlights that PDMS combined with four corner pins is feasible to maintain the space and stabilize the graft and membranes in severe continuous horizontal bone defect.
基金supported by grants from the National Natural Science Foundation of China(11772226,81871777 and 81572154)the Tianjin Science and Technology Plan Project(18PTLCSY00070,16ZXZNGX00130)grants awarded to Xiao-Song Gu by the National Natural Science Foundation of China(31730031 and L1924064)。
文摘Compared with non-degradable materials,biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects,and have attracted extensive attention from researchers.In the treatment of bone defects,scaffolds made of biodegradable materials can provide a crawling bridge for new bone tissue in the gap and a platform for cells and growth factors to play a physiological role,which will eventually be degraded and absorbed in the body and be replaced by the new bone tissue.Traditional biodegradable materials include polymers,ceramics and metals,which have been used in bone defect repairing for many years.Although these materials have more or fewer shortcomings,they are still the cornerstone of our development of a new generation of degradable materials.With the rapid development of modern science and technology,in the 21 st century,more and more kinds of new biodegradable materials emerge in endlessly,such as new intelligent micro-nano materials and cell-based products.At the same time,there are many new fabrication technologies of improving biodegradable materials,such as modular fabrication,3 D and 4 D printing,interface reinforcement and nanotechnology.This review will introduce various kinds of biodegradable materials commonly used in bone defect repairing,especially the newly emerging materials and their fabrication technology in recent years,and look forward to the future research direction,hoping to provide researchers in the field with some inspiration and reference.
基金Supported by the National Natural Science Foundation of China,No. 31800816Fundamental Research Program Funding of the Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,No. JYZZ109
文摘BACKGROUND The odontogenic jaw cyst is a cavity containing liquid,semifluid or gaseous components,with the development of the disease.In recent years,with the rapid development of oral materials and the transformation of treatment of jaw cysts,more options are available for treatment of postoperative bone defect of jaw cysts.Guided bone regeneration(GBR)places biomaterials in the bone defect,and then uses biofilm to separate the proliferative soft tissue and the slow-growing bone tissue to maintain the space for bone regeneration,which is widely used in the field of implantology.AIM To observe the clinical effect of GBR in repairing bone defect after enucleation of small and medium-sized odontogenic jaw cysts.METHODS From June 2018 to September 2020,13 patients(7 male,6 female)with odontogenic jaw cysts were treated in the Department of Oral Surgery,Ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine.Adults without hypertension,heart disease,diabetes or other systemic diseases were selected.The diagnosis was based on the final pathological results:11 cases were diagnosed as apical cysts,one as primordial cyst,and one as dentigerous cyst.The lesions were located in the maxilla in seven cases,and in the mandible in six cases.All cases were treated with the same method of enucleation combined with GBR.RESULTS Three to four months after the operation,the boundary between the implant site and the surrounding normal stroma was not obvious in patients with small-sized odontogenic jaw cysts.The patients with tooth defects were treated with implant after 6 mo.For the patients with medium-sized odontogenic jaw cysts,the density of the center of the implant area was close to the normal mass at 6 mo after surgery,and there was a clear boundary between the periphery of the implant area and the normal mass.The boundary between the periphery of the implant area and the normal mass was blurred at 8-9 mo after surgery.Patients with tooth defects were treated with implants at>6 mo after the operation.CONCLUSION Enucleation combined with guided bone regeneration in small and medium-sized odontogenic jaw cysts can shorten the time of osteogenesis,increase the amount of new bone formation,reduce complications,and improve quality of life.
文摘BACKGROUND Hip revision surgery is the final treatment option for the failure of artificial hip joints, but it is more difficult than the initial operation. For patients with hip joint loosening around the prosthesis combined with large inflammatory pseudotumours and large segment bone defects, hip revision is even more difficult, and clinical reports are rare.CASE SUMMARY Male, 59 years old. The patient underwent left hip replacement 35 years ago and was now admitted to hospital due to massive masses in the left thigh, shortening of the left lower extremity, and pain and lameness of the left hip joint. X-ray, computed tomography and magnetic resonance imaging revealed prosthesis loosening, left acetabular bone defect(Parprosky IIIB type), and a bone defect of the left proximal femur(Parprosky IIIA type). Inflammatory pseudotumours were seen in the left hip and left thigh. Hip revision surgery was performed using a 3Dprinted custom acetabular prosthesis was used for hip revision surgery, which was produced by Arcam Electron Beam Melting system with Electron Beam Melting technology. The operation was successful, and the patient was followed up regularly after the operation. The custom-made acetabular prosthesis was well matched, the inflammatory pseudotumour was completely removed, the postoperative hip prosthesis was stable, and the old greater trochanter fracture was well reduced and fixed. The patient was partially weight-bearing with crutches 3 mo after the operation and walked with full weight-bearing after 6 mo. The hip prosthesis was stable, and there was no recurrence of inflammatory pseudotumours at the last follow-up. The Visual Analogue Scale was 3, and the Harris hip score was 90.CONCLUSION The use of 3D-printed personalized custom prostheses for complex hip revision surgery has satisfactory surgical results and has great clinical application value.
文摘This paper reports the results of 24 cases of bone defect resulting from bone tumor or tumor condition excision, and of posterior spinal fusion, treated by human bone matrix gelatin. The success rate of bone defect repair and spinal fusion is 91. 67 %. The results suggest that human bone matrix gelatin has. excellent osteoinductive effect and is ideal substitute for bone autografts.
基金supported by a grant from the Musculoskeletal Transplant Foundation (JC)the National Institute of Health, the National Institute of Aging [NIH-NIA PO1-AG036675] (ME, WDH)+4 种基金in part by the Department of Veterans Affairs (VA Merit Award BX000333, ACL 1I01CX000930-01, WDH)funded through a training grant from the National Institutes of Health National Institute of Dental and Craniofacial Research [5T32DE017551]S.H. is funded through a fellowship from the National Institutes of Health National Institute of Dental and Craniofacial Research [5F32DE02471202]supported by the National Institutes of Health National Institute of General Medicine [P30GM103331]
文摘Bone wound healing is a highly dynamic and precisely controlled process through which damaged bone undergoes repair and complete regeneration. External factors can alter this process, leading to delayed or failed bone wound healing. The findings of recent studies suggest that the use of selective serotonin reuptake inhibitors(SSRIs) can reduce bone mass, precipitate osteoporotic fractures and increase the rate of dental implant failure. With 10% of Americans prescribed antidepressants, the potential of SSRIs to impair bone healing may adversely affect millions of patients’ ability to heal after sustaining trauma. Here, we investigate the effect of the SSRI sertraline on bone healing through pre-treatment with(10 mg·kg-1sertraline in drinking water, n = 26) or without(control, n = 30) SSRI followed by the creation of a 5-mm calvarial defect. Animals were randomized into three surgical groups:(a) empty/sham,(b) implanted with a DermaMatrix scaffold soak-loaded with sterile PBS or(c) DermaMatrix soak-loaded with542.5 ng BMP2. SSRI exposure continued until sacrifice in the exposed groups at 4 weeks after surgery. Sertraline exposure resulted in decreased bone healing with significant decreases in trabecular thickness, trabecular number and osteoclast dysfunction while significantly increasing mature collagen fiber formation. These findings indicate that sertraline exposure can impair bone wound healing through disruption of bone repair and regeneration while promoting or defaulting to scar formation within the defect site.
基金Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘The stability parameters of implants (ITV, ISQ & PTV) according to different sizes of controlled bone defects made in implant osteotomies were analyzed and the correlation among the three kinds of implant stability parameters was tested in this study. 45 tapped screw-type dental implants were inserted in three types of implant osteotomies made in 8 fresh-frozen pig femoral bones: Typel - without coronal bone defect, Type2 - with 3 mm coronal bone defects, and Type3 - with 6 mm coronal bone defects. The insertion torque values, ISQ & PTV of implants were measured and analyzed statistically. It is concluded that the circumferential coronal bone defects statistically influence the primary stability of implants; ITV, ISQ and PTV are suitable and available to detect the peri-implant coronal bone defects in 3 mm increments, and ITV and PTV are more sensitive to coronal cortical bone loss. There was a strong correlation between ITV and ISQ.
文摘Because of its simplicity,reliability,and replicability,the Masquelet induced membrane technique(IMT)has become one of the preferred methods for critical bone defect reconstruction in extremities.Although it is now used worldwide,few studies have been published about IMT in military practice.Bone reconstruction is particularly challenging in this context of care due to extensive soft-tissue injury,early wound infection,and even delayed management in austere conditions.Based on our clinical expertise,recent research,and a literature analysis,this narrative review provides an overview of the IMT application to combat-related bone defects.It presents technical specificities and future developments aiming to optimize IMT outcomes,including for the management of massive multi-tissue defects or bone reconstruction performed in the field with limited resources.