期刊文献+
共找到1,889篇文章
< 1 2 95 >
每页显示 20 50 100
O-linkedβ-N-acetylglucosaminylation may be a key regulatory factor in promoting osteogenic differentiation of bone marrow mesenchymal stromal cells
1
作者 Xu-Chang Zhou Guo-Xin Ni 《World Journal of Stem Cells》 SCIE 2024年第3期228-231,共4页
Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors ... Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors have been gradually elucidated,the potential mechanisms of O-GlcNAcylation in bone metabolism,particularly,in the osteogenic differentiation of bone marrow mesenchymal stromal cells(BMSCs)remains unexplored.In this study,the literature related to O-GlcNAcylation and BMSC osteogenic differentiation was reviewed,assuming that it could trigger more scholars to focus on research related to OGlcNAcylation and bone metabolism and provide insights into the development of novel therapeutic targets for bone metabolism disorders such as osteoporosis. 展开更多
关键词 O-GLCNACYLATION Osteogenic differentiation bone marrow mesenchymal stromal cells OSTEOPOROSIS
下载PDF
Overexpression of lentivirus-mediated glial cell line-derived neurotrophic factor in bone marrow stromal cells and its neuroprotection for the PC12 cells damaged by lactacystin 被引量:1
2
作者 苏雅茹 王坚 +2 位作者 邬剑军 陈嬿 蒋雨平 《Neuroscience Bulletin》 SCIE CAS CSCD 2007年第2期67-74,共8页
Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by... Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor. 展开更多
关键词 Parkinson' s disease proteasome inhibitor glial cell line-derived neurotropnic factor LENTIVIRUS gene therapy bone marrow stromal cells
下载PDF
Millimeter-wave Exposure Promotes the Differentiation of Bone Marrow Stromal Cells into Cells with a Neural Phenotype 被引量:9
3
作者 童叶青 杨朝辉 +5 位作者 杨迪 楚慧款 曲敏 刘冠兰 吴艳 刘胜洪 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2009年第4期409-412,共4页
This study investigated the ability of millimeter-wave (MMW) to promote the differentiation of bone marrow stromal cells (BMSCs) into cells with a neural phenotype. The BMSCs were primarily cultured. At passage 3,... This study investigated the ability of millimeter-wave (MMW) to promote the differentiation of bone marrow stromal cells (BMSCs) into cells with a neural phenotype. The BMSCs were primarily cultured. At passage 3, the cells were induced by β-mercaptoethanol (BME) in combination with MMW or BME alone. The expressions of nucleostemin (NS) and neuron-specific enolase (NSE) were detected by immunofluorescent staining and Western blotting respectively to identify the differentiation. The untreated BMSCs predominately expressed NS. After induced by BME and MMW, the BMSCs exhibited a dramatic decrease in NS expression and increase in NSE expression. The differentiation rate of the cells treated with BME and MMW in combination was significantly higher than that of the cells treated with BME alone (P〈0.05). It was concluded that MMW exposure enhanced the inducing effect of BME on the differentiation of BMSCs into cells with a neural phenotype. 展开更多
关键词 bone marrow stromal cells β-mercaptoethanol MILLIMETER-WAVE NUCLEOSTEMIN neuron specific enolase
下载PDF
Adipose-derived stromal cells resemble bone marrow stromal cells in hepatocyte differentiation potential in vitro and in vivo 被引量:7
4
作者 Li-juan Xu Shu-fang Wang +5 位作者 De-Qing Wang Lian-jun Ma Zheng Chen Qian-Qian Chen Jun Wang Li Yan 《World Journal of Gastroenterology》 SCIE CAS 2017年第38期6973-6982,共10页
AIM To investigate whether mesenchymal stem cells(MSCs) from adipose-derived stromal cells(ADSCs) and bone marrow stromal cells(BMSCs) have similar hepatic differentiation potential.METHODS Mouse ADSCs and BMSCs were ... AIM To investigate whether mesenchymal stem cells(MSCs) from adipose-derived stromal cells(ADSCs) and bone marrow stromal cells(BMSCs) have similar hepatic differentiation potential.METHODS Mouse ADSCs and BMSCs were isolated and cultured. Their morphological and phenotypic characteristics, as well as their multiple differentiation capacity were compared. A new culture system was established to induce ADSCs and BMSCs into functional hepatocytes. Reverse transcription polymerase chain reaction, Western blot, and immunofluorescence analyses were performed to identify the induced hepatocytelike cells. CM-Dil-labeled ADSCs and BMSCs were then transplanted into a mouse model of CCl4-induced acute liver failure. fluorescence microscopy was used to track the transplanted MSCs. Liver function was tested by an automatic biochemistry analyzer, and liver tissue histology was observed by hematoxylin and eosin(HE) staining.RESULTS ADSCs and BMSCs shared a similar morphology and multiple differentiation capacity, as well as a similar phenotype(with expression of CD29 and CD90 and no expression of CD11 b or CD45). Morphologically, ADSCs and BMSCs became round and epithelioid following hepatic induction. These two cell types differentiated into hepatocyte-like cells with similar expression of albumin, cytokeratin 18, cytokeratin 19, alpha fetoprotein, and cytochrome P450. fluorescence microscopy revealed that both ADSCs and BMSCs were observed in the mouse liver at different time points. Compared to the control group, both the function of the injured livers and HE staining showed significant improvement in the ADSC-and BMSC-transplanted mice. There was no significant difference between the two MSC groups.CONCLUSION ADSCs share a similar hepatic differentiation capacity and therapeutic effect with BMSCs in an acute liver failure model. ADSCs may represent an ideal seed cell type for cell transplantation or a bio-artificial liver support system. 展开更多
关键词 Adipose-derived stromal cells bone marrow stromal cells cell differentiation Hepatocyte differentiation
下载PDF
Expression of Neuropilin-1 Gene in Bone Marrow Stromal Cells from Patients with Myeloid Leukemia and Normal Individuals
5
作者 宿颖 王震 +4 位作者 吴秀丽 黄梅娟 陈少华 杨力建 李扬秋 《The Chinese-German Journal of Clinical Oncology》 CAS 2005年第3期171-173,190,共4页
Objective: To investigate the expression of neuropilin-1 (NP-1) gene in bone marrow stromal cells (BMSCs) from myeloid leukemia (AML and CML) and normal individuals. Methods: Mononuclear cells were isolated from bone ... Objective: To investigate the expression of neuropilin-1 (NP-1) gene in bone marrow stromal cells (BMSCs) from myeloid leukemia (AML and CML) and normal individuals. Methods: Mononuclear cells were isolated from bone marrow (BM) of CML (14 cases), AML (12 cases) and normal individuals (20 cases). Adherent cells (i.e. BMSCs) were collected after long-term culture in vitro. The expression of NP-1 gene in three groups was detected respectively by reverse-transcription polymerase chain reaction (RT-PCR). Results: The long-term culture of BMSCs was successfully established. The expression level of NP-1 gene was significantly lower in BMSCs from AML (47.1%) and CML (50%) than in normal individuals (85%). Conclusion: NP-1 gene is expressed in BMSCs from some AML or CML patients and most normal individuals. The low-expression of NP-1 gene in BMSCs from AML or CML patients might be related with abnormality of regulation in hematopoiesis. 展开更多
关键词 neuropilin-1 gene myeloid leukemia bone marrow stromal cell
下载PDF
Intra-portal transplantation of bone marrow stromal cells ameliorates liver fibrosis in mice 被引量:4
6
作者 Zheng, Jin-Fang Liang, Li-Jian 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2008年第3期264-270,共7页
BACKGROUND: Bone marrow cells can differentiate into hepatocytes in a suitable microenvironment. This study was undertaken to investigate the effects of transplanted bone marrow stromal cells (BMSCs) on liver fibrosis... BACKGROUND: Bone marrow cells can differentiate into hepatocytes in a suitable microenvironment. This study was undertaken to investigate the effects of transplanted bone marrow stromal cells (BMSCs) on liver fibrosis in mice. METHODS: BMSCs were harvested and cultured from male BALB/c mice, then transplanted into female syngenic BALB/c mice via the portal vein. After partial hepatectomy, diethylnitrosamine (DEN) was administered to induce liver fibrosis. Controls received BMSCs and non-supplemented drinking water, the model group received DEN with their water, and the experimental group received BMSCs and DEN. Mice were killed after 3 months, and ALT, AST, hyaluronic acid (HA), and laminin (LN) in serum and hydroxyproline (Hyp) in the liver were assessed. Alpha-smooth muscle actin (alpha-SMA) in the liver was assessed by immunohistochemistry. Bone marrow-derived hepatocytes were identified by fluorescent in situ hybridization (FISH) in liver sections. RESULTS: BMSCs were shown to differentiate into hepatocyte-like phenotypes after hepatocyte growth factor treatment in vitro. Serum ALT, AST, HA, and LN were markedly reduced by transplanted BMSCs. Liver Hyp content and alpha-SMA staining in mice receiving BMSCs were lower than in the model group, consistent with altered liver pathology. FISH analysis revealed the presence of donor-derived hepatocytes in the injured liver after cross-gender mouse BMSC transplantation. After three months, about 10% of cells in the injured liver were bone marrow-derived. CONCLUSION: BMSCs transplanted via the portal vein can convert into hepatocytes to repair liver injury induced by DEN, restore liver function, and reduce liver fibrosis. 展开更多
关键词 bone marrow stromal cell HEPATOCYTE differentiation cell therapy liver fibrosis
下载PDF
Effects of Panax notoginseng saponins on hydrogen peroxide-induced apoptosis in cultured rabbit bone marrow stromal cells 被引量:3
7
作者 Hui Qiang1,2,Guang-Sheng Wang3,Chen Zhang1,Zhi-Bin Shi1,Li-Hong Fan1,Kun-Zheng Wang1 1.Department of Orthopedics,the Second Affiliated Hospital,Medical School of Xi’an Jiaotong University,Xi’an 710004 2.Department of Orthopedics,Shaanxi Province People’s Hospital,Xi’an 710068 3.Department of Orthopedics,Huashan Hospital,Baoji 721000,China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2010年第1期25-29,共5页
Objective To investigate the effects of Panax notoginseng saponins(PNS)on hydrogen peroxide(H2O2)-induced apoptosis in cultured rabbit bone marrow stromal cells(BMSCs).Methods BMSCs from 3-month-old New Zealand rabbit... Objective To investigate the effects of Panax notoginseng saponins(PNS)on hydrogen peroxide(H2O2)-induced apoptosis in cultured rabbit bone marrow stromal cells(BMSCs).Methods BMSCs from 3-month-old New Zealand rabbits were isolated and cultured by the density gradient centrifugation combined with adherent method.The cultured BMSCs were divided into three groups:normal control,H2O2 treatment(100μmol/L),and PNS pretreatment(0.1g/L).Intracellular reactive oxygen species(ROS)levels as the index of oxidative stress were measured by using 2’7’-dichlorodihydrofluorescein diacetate.Flow cytometry was used to observe the apoptosis of BMSCs by staining with annexinV-FITC/PI.The protein expression of Bax in BMSCs was analyzed by Western blotting.Activity of caspase-3 enzyme was measured by spectrofluorometry.Results Pretreatment with PNS significantly decreased intracellular ROS level induced by H2O2(P<0.01).PNS markedly attenuated H2O2-induced apoptosis rate from 38.68% to 19.24%(P<0.01).PNS reversed H2O2-induced augmentation of Bax expression.Furthermore,PNS markedly reduced the altered in activity of caspase-3 enzyme induced by H2O2(P<0.01).Conclusion PNS has a protective effect on hydrogen peroxide-induced apoptosis in cultured rabbit BMSCs by scavenging ROS and decreasing Bax expression and caspase-3 activity. 展开更多
关键词 Panax notoginseng saponins reactive oxygen species bone marrow stromal cell APOPTOSIS BAX
下载PDF
Granulocyte-macrophage colony-stimulating factor-transfected bone marrow stromal cells for the treatment of ischemic stroke 被引量:2
8
作者 Xingjian Lin Yingdong Zhang +4 位作者 Weiguo Liu Jingde Dong Jie Lu Qing Di Jingping Shi 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第16期1220-1227,共8页
Adult, male, Sprague-Dawley rats were injected with granulocyte-macrophage colony-stimulating factor-transfected bone marrow stromal cells (GM-CSF-BMSCs) into the ischemic boundary zone at 24 hours after onset of mi... Adult, male, Sprague-Dawley rats were injected with granulocyte-macrophage colony-stimulating factor-transfected bone marrow stromal cells (GM-CSF-BMSCs) into the ischemic boundary zone at 24 hours after onset of middle cerebral artery occlusion. Results showed reduced infarct volume, decreased number of apoptotic cells, improved neurological functions, increased angiogenic factor expression, and increased vascular density in the ischemic boundary zone in rats that underwent GM-CSF-BMSCs transplantation compared with the BMSCs group. Experimental findings suggested that GM-CSF-BMSCs could serve as a potential therapeutic strategy for ischemic stroke and are superior to BMSCs alone. 展开更多
关键词 bone marrow stromal cells granulocyte-macrophage colony-stimulating factor gene transfection ischemic stroke TRANSPLANTATION stem cells neural regeneration
下载PDF
Co-transplantation of Schwann cells and bone marrow stromal cells versus single cell transplantation on repairing hemisected spinal cord injury of rats 被引量:2
9
作者 Jifei Zhang Geng Wu +1 位作者 Fusheng Zhao Xiudong Jin 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第11期805-813,共9页
BACKGROUND: Bone marrow stromal cells (BMSCs) or Schwann cells (SCs) transplantation alone can treat spinal cord injury. However, the transplantation either cell-type alone has disadvantages. The co-transplantati... BACKGROUND: Bone marrow stromal cells (BMSCs) or Schwann cells (SCs) transplantation alone can treat spinal cord injury. However, the transplantation either cell-type alone has disadvantages. The co-transplantation of both cells may benefit structural reconstruction and functional recovery of spinal nerves. OBJECTIVE: To verify spinal cord repair and related mechanisms after co-transplantation of BMSCs and SCs in a rat model of hemisected spinal cord injury. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Histology and Embryology, Mudanjiang Medical College from January 2008 to May 2009. MATERIALS: Rabbit anti-S-100, glial fibrillary acidic protein, neuron specific enolase and neurofilament-200 monoclonal antibodies were purchased from Sigma, USA. METHODS: A total of 100 Wistar rats were used in a model of hemisected spinal cord injury. The rats were randomly assigned to vehicle control, SCs transplantation, BMSCs transplantation, and co-transplantation groups; 25 rats per group. At 1 week after modeling, SCs or BMSCs cultured in vitro were labeled and injected separately into the hemisected spinal segment of SCs and BMSCs transplantation groups through three injection points [5 μL (1 x 107 cells/mL)] cell suspension in each point). In addition, a 15 μL 1 × 10^7 cells/mL SCs suspension and a 15 μL 1 × 10^7 cells/mL BMSC suspension were injected into co-transplantation group by the above method. MAIN OUTCOME MEASURES: The Basso-Beattie-Bresnahan (BBB) locomotor rating scale and somatosensory evoked potential (SEP) tests were used to assess the functional recovery of rat hind limbs following operation. Structural repair of injured nerve tissue was observed by light microscopy, electron microscopy, immunohistochemistry, and magnetic resonance imaging (MRI). In vivo differentiation, survival and migration of BMSCs were evaluated by immunofluorescence. RESULTS: BBB scores were significantly greater in all three transplantation groups compared with vehicle control group 8 weeks after transplantation. In particular, the co-transplantation group displayed the highest scores among the groups (P 〈 0.05). Moreover, recovery of SEP latency and amplitude was observed in all the transplantation groups, particularly after 8 weeks. Again, the co-transplantation group exhibited the greatest improvement (P 〈 0.05). In the co-transplantation group, imaging showed a smooth surface and intact inner structure at the injury site, with no scar formation, and a large number of orderly cells at the injured site. Axonal regeneration, new myelination, and a large amount of cell division were detected in the co-transplantation group by electron microscopy. Neuron specific enolase (NSE)- and glial fibriilary acidic protein (GFAP)-positive cells were observed in the spinal cord sections 1 week following co-transplantation by immunofluorescence staining. CONCLUSION: Co-transplantation of SCs and BMSCs effectively promoted functional recovery of injured spinal cord in rats compared with SCs or BMSCs transplantation alone. This repair effect is probably achieved because of neuronal-like cells derived from BMSCs to supplement dead neurons in vivo. 展开更多
关键词 bone marrow stromal cells Schwann cells CO-TRANSPLANTATION spinal cord injury neural regeneration
下载PDF
Tissue Extracts From Infarcted Myocardium of Rats in Promoting the Differentiation of Bone Marrow Stromal Cells Into Cardiomyocyte-like Cells 被引量:2
10
作者 XIAO-NING LIU Oi YIN +4 位作者 HAO ZHANG HONG ZHANG SHEN-JUN ZHU YING-Jie WEI SHENG-SHOU HU 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2008年第2期110-117,共8页
Objective To investigate whether cardiac tissue extracts from rats could mimic the cardiac microenvironment and act as a natural inducer in promoting the differentiation of bone marrow stromal cells (BMSCs) into car... Objective To investigate whether cardiac tissue extracts from rats could mimic the cardiac microenvironment and act as a natural inducer in promoting the differentiation of bone marrow stromal cells (BMSCs) into cardiomyocytes. Methods Three kinds of tissue extract or cell lysate [infarcted myocardial tissue extract (IMTE), normal myocardial tissue extract (NMTE) and cultured neonatal myocardial lysate (NML)] were employed to induce BMSCs into cardiomyocyte-like cells. The cells were harvested at each time point for reverse transcription-polymerase chain reaction (RT-PCR) detection, immunocytochemical analysis, and transmission electron microscopy. Results After a 7-day induction, BMSCs were enlarged and polygonal in morphology. Myofilaments, striated sarcomeres, Z-lines, and more mitochondia were observed under transmission electron microscope. Elevated expression levels of cardiac-specific genes and proteins were also confirmed by RT-PCR and immunocytochemistry. Moreover, IMTE showed a greater capacity of differentiating BMSCs into cardiomyocyte-like cells. Conclusions Cardiac tissue extracts, especially IMTE, can effectively differentiate BMSCs into cardiomyocyte-like cells. 展开更多
关键词 bone marrow stromal cells cell differentiation Cardiac tissue extracts Myocardial infarction
下载PDF
In vitro differentiation of adipose-derived stem cells and bone marrow-derived stromal stem cells into neuronal-like cells 被引量:21
11
作者 Jin Zhou Guoping Tian +9 位作者 Jing'e Wang Xuefeng Cong Xingkai Wu Siyang Zhang Li Li Bing Xu Feng Zhu Xuedan Luo Jian Han Fengjie Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第19期1467-1472,共6页
Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analys... Adipose-derived stem cells and bone marrow-derived stromal stem cells were co-cultured with untreated or Aβ1-40-treated PC12 cells, or grown in supernatant derived from untreated or Aβ1-40-treated PC12 cells. Analysis by western blot and quantitative real-time PCR showed that protein levels of Nanog, Oct4, and Sox2, and mRNA levels of miR/125a/3p were decreased, while expression of insulin-like growth factor-2 and neuron specific enolase was increased. In comparison the generation of neuron specific enolase-positive cells was most successful when adipose-derived stem cells were co-cultured with Aβ1-40-treated PC12 cells. Our results demonstrate that adipose-derived stem cells and bone marrow-derived stromal stem cells exhibit trends of neuronal-like cell differentiation after co-culture with Aβ1-40-treated PC12 cells. This process may relate to a downregulation of miR-125a-3p mRNA expression and increased levels of insulin-like growth factor-2 expression. 展开更多
关键词 adipose-derived stem cells bone marrow-derived stromal stem cells DIFFERENTIATION NEURON miR-125a-3p neural regeneration
下载PDF
Down-Regulation of Neurocan Expression in Reactive Astrocytes Promotes Axonal Regeneration and Facilitates the Neurorestorative Effects of Bone Marrow Stromal Cells in the Ischemic Rat Brain 被引量:51
12
作者 LI HONG SHEN YI LI +2 位作者 QI GAO SMITA SAVANT-BHONSALE AND MICHAEL CHOPP 《神经损伤与功能重建》 2008年第6期404-410,共7页
脑卒中后缺血组织边界形成胶质疤痕,抑制轴突再生。神经蛋白聚糖是一种轴突延长抑制分子,在卒中后胶质疤痕中表达上调。骨髓基质干细胞(BMSCs)可降低胶质疤痕壁的厚度,加速缺血周边区的轴突重塑。为了进一步明确BMSCs在轴突再生中的作... 脑卒中后缺血组织边界形成胶质疤痕,抑制轴突再生。神经蛋白聚糖是一种轴突延长抑制分子,在卒中后胶质疤痕中表达上调。骨髓基质干细胞(BMSCs)可降低胶质疤痕壁的厚度,加速缺血周边区的轴突重塑。为了进一步明确BMSCs在轴突再生中的作用及机制,本文重点研究脑缺血组织中BMSCs对神经蛋白聚糖表达的作用。31只成年雄性Wistar大鼠大脑中动脉阻塞(MCAo)2 h,24 h后从中选择16只给予尾静脉注射3×106鼠BMSCs(BMSCs组),15只注射磷酸盐缓冲生理盐水(对照组)。缺血后8 d处死实验大鼠,免疫染色表明反应性星形胶质细胞是神经蛋白聚糖的原始来源,且BMSCs组缺血半暗带脑组织的神经聚糖表达明显低于对照组,生长相关蛋白43表达高于对照组,这在蛋白印迹分析中得到确认。为了进一步检测BMSCs在星形胶质细胞神经蛋白聚糖表达中的作用,用激光捕获显微切割法从缺血周边区收集单纯的反应性星形胶质细胞。BMSCs组的神经蛋白聚糖基因表达明显下调(n=4/组)。原代培养的星形胶质细胞也表现出相同改变,糖氧剥离的星形胶质细胞再给氧时与BMSCs共培养会抑制神经蛋白聚糖基因的表达上调(n=3/组)。本研究表明BMSCs通过下调梗死周边星形胶质细胞中神经蛋白聚糖的表达来促进轴突再生。 展开更多
关键词 骨髓基质干细胞 卒中 轴突再生 神经蛋白聚糖 反应性星形胶质细胞
下载PDF
Effects of Panax notoginseng saponins on apoptosis induced by hydrogen peroxide in cultured rabbit bone marrow stromal cells via altering the oxidative stress level and down-regulating caspase-3 被引量:3
13
作者 Hui Qiang Peiguo Gao +4 位作者 Chen Zhang Zhibin Shi Tao Wang Lei Wang Kunzheng Wang 《Journal of Nanjing Medical University》 2009年第6期373-379,共7页
Objective: To investigate the effects of Panax notoginseng saponins (PNS) on hydrogen peroxide (H2O2)-induced apoptosis in cultured rabbit bone marrow stromal cells (BMSCs). Methods: The effects of different c... Objective: To investigate the effects of Panax notoginseng saponins (PNS) on hydrogen peroxide (H2O2)-induced apoptosis in cultured rabbit bone marrow stromal cells (BMSCs). Methods: The effects of different concentrations of PNS on proliferation and early osteoblast differentiation of BMSCs were determined by the MTT assay and an alkaline phosphatase (ALP) assay. An optimal effective concentration of PNS was determined and used in subsequent experiments. The cultured BMSCs were divided into three groups: untreated control, H2O2 treated, and PNS pretreatment of H2O2 treated. The oxidative stress level was assessed by superoxide dismutase (SOD) and malondialdehyde (MDA) assays. Flow cytometry was used to determine BMSC apoptosis by staining with annexinV-FITC/propidium iodide (PI). The activity of caspase-3 enzyme was measured by spectrofluorometry. Results: PNS (0.1g/L) significantly increased both BMSC proliferation rate and ALP activity, while it decreased the indicators of oxidative stress, caspase-3 activity, and the apoptosis rate of BMSCs induced by H2O2.. Conclusion: PNS, acting as a biological antioxidant, had a protective effect on H2O2-induced apoptosis in cultured rabbit BMSCs by decreasing oxidative stress and down-regulating caspase-3. 展开更多
关键词 Panax notoginseng saponins (PNS) oxidative stress bone marrow stromal cells (BMSCs) APOPTOSIS CASPASE-3
下载PDF
Improvement of learning and memory abilities and motor function in rats with cerebral infarction by intracerebral transplantation of neuron-like cells derived from bone marrow stromal cells 被引量:4
14
作者 Ying Wang Yubin Deng +2 位作者 Ye Wang Yan Li Zhenzhen Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第1期1-5,共5页
BACKGROUND: Transplantation of fetal cell suspension or blocks of fetal tissue can ameliorate the nerve function after the injury or disease in the central nervous system, and it has been used to treat neurodegenerat... BACKGROUND: Transplantation of fetal cell suspension or blocks of fetal tissue can ameliorate the nerve function after the injury or disease in the central nervous system, and it has been used to treat neurodegenerative disorders induced by Parkinson disease. OBJECTIVE: To observe the effects of the transplantation of neuron-like cells derived from bone marrow stromal cells (rMSCs) into the brain in restoring the dysfunctions of muscle strength and balance as well as learning and memory in rat models of cerebral infarction. DESIGN : A randomized controlled experiment.SETTING : Department of Pathophysiology, Zhongshan Medical College of Sun Yat-sen University.MATERIALS : Twenty-four male SD rats (3-4 weeks of age, weighing 200-220 g) were used in this study (Certification number:2001A027). METHODS: The experiments were carried out in Zhongshan Medical College of Sun Yat-sen University between December 2003 and December 2004. ① Twenty-four male SD rats randomized into three groups with 8 rats in each: experimental group, control group and sham-operated group. Rats in the experiment al group and control group were induced into models of middle cerebral artery occlusion (MCAO). After in vitro cultured, purified and identified with digestion, the Fischer344 rMSCs were induced to differentiate by tanshinone IIA, which was locally injected into the striate cortex (18 area) of rats in the experimental group, and the rats in the control group were injected by L-DMEM basic culture media (without serum) of the same volume to the corresponding brain area. In the sham-operated group, only muscle and vessel of neck were separated. ② At 2 and 8 weeks after the transplantation, the rats were given the screen test, prehensile-traction test, balance beam test and Morris water-maze test. ③ The survival and distribution of the induced cells in corresponding brain area were observed with Nissl stained with toluidine blue and hematoxylin and eosin (HE) staining in the groups.MAIN OUTCOME MEASURES : ① Results of the behavioral tests (time of the Morris water-maze test screen test, prehensile-traction test, balance beam test); ② Survival and distribution of the induced cells.RESULTS: All the 24 rats were involved in the analysis of results. ① Two weeks after transplantation, rats with neuron-like cells grafts in the experimental group had significant improvement on their general muscle strength than those in the control group [screen test: (9.4±1.7), (4.7±1.0) s, P 〈 0.01]; forelimb muscle strength [prehensile-traction test: (7.6±1.4), (5.2±1.2) s, P 〈 0.01], ability to keep balance [balance beam test: (7.9±0.74), (6.1±0.91) s, P 〈 0.01] and abilities of learning and memory [latency to find the platform: (35.8±5.9), (117.5±11.6) s, P 〈 0.01; distance: (623.1±43.4), (1 902.3±98.6) cm, P 〈 0.01] as compared with those in the control group. The functional performances in the experimental group at 8 weeks were better than those at two weeks, which were still obviously different from those in the sham-operated group (P 〈 0.05). ② The HE and Nissl stained brain tissue section showed that there was nerve cell proliferation at the infarcted cortex in the experiment group, the density was higher than that in the control group, plenty of aggregative or scattered cells could be observed at the site where needle was inserted for transplantation, the cells migrated directively towards the area around them, the cerebral vascular walls were wrapped by plenty of cells; In the control group, most of the cortices were destroyed, karyopyknosis and necrosis of neurons were observed, normal nervous tissue structure disappeared induced by edema, only some nerve fibers and glial cells remained.CONCLUSION: The rMSCs transplantation can obviously enhance the motor function and the abilities of learning and memory in rat models of cerebral infarction. 展开更多
关键词 Improvement of learning and memory abilities and motor function in rats with cerebral infarction by intracerebral transplantation of neuron-like cells derived from bone marrow stromal cells bone
下载PDF
Neuron-like differentiation of adult rat bone marrow stromal cells induced by transforming growth factor-beta and brain-derived neurotrophic factor 被引量:1
15
作者 Chang Liu Xifan Mei +3 位作者 Gang LU Yansong Wang Quanshuang Li Zhanpeng Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第4期297-301,共5页
BACKGROUND: It has been demonstrated that transforming growth factor-β (TGF-β) and brain- derived neurotrophic factor (BDNF) can induce stem cell differentiation into neuron-like cells. OBJECTIVE: To investiga... BACKGROUND: It has been demonstrated that transforming growth factor-β (TGF-β) and brain- derived neurotrophic factor (BDNF) can induce stem cell differentiation into neuron-like cells. OBJECTIVE: To investigate the efficacy of TGF-β and BDNF at inducing the differentiation of adult rat bone marrow stromal cells (BMSCs) into neuron-like cells, both in combination or alone. DESIGN, TIME AND SETTING: A comparative observation experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University between October 2007 and January 2008. MATERIALS: TGF-~ and BDNF were purchased from Sigma, USA; mouse anti-rat neuron specific enolase, neurofilament and glial fibrillary acidic protein were purchased from Beijing HMHL Biochem Ltd., China. METHODS: BMSCs were isolated from rats aged 4 weeks and incubated with TGF-β(1μ g/L) and/or BDNF (50 μ g/mL). MAIN OUTCOME MEASURES: Expression of neuron-specific enolase, neurofilament and glial fibrillary acidic protein were determined by immunocytochemistry. RESULTS: BMSCs differentiated into neuron-like cells following induction of TGF-β and BDNF, and expressed both neuron-specific enolase and neurofilament. The percent of positive cells was significantly greater in the combination group than those induced with TGF-β or BDNF alone (P 〈 0.01). CONCLUSION: Treatment of BMSCs with a combination of TGF-β and BDNF induced differentiation into neuron-like cells, with the induction being significantly greater than with TGF-β or BDNF alone. 展开更多
关键词 bone marrow stromal cells green fluorescent protein transforming growth factor-β brain-derived neurotrophic factor neuron-like cells
下载PDF
miR-124 and miR-128 differential expression in bone marrow stromal cells and spinal cord-derived neural stem cells 被引量:1
16
作者 Chunfang Wang Hongen Wei +3 位作者 Chuansen Zhang Pengfei Li Fei Wang Shufeng Han 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第11期820-824,共5页
BACKGROUND: MicroRNA (miRNA) expression in stem cells provides important clues for the molecular mechanisms of stem cell proliferation and differentiation. Bone marrow stromal cells and spinal cord-derived neural s... BACKGROUND: MicroRNA (miRNA) expression in stem cells provides important clues for the molecular mechanisms of stem cell proliferation and differentiation. Bone marrow stromal cells and spinal cord-derived neural stem cells exhibit potential for neural regeneration. However, miRNA expression in these cells has been rarely reported. OBJECTIVE: To explore differential expression of two nervous system-specific miRNAs, miR-124 and miR-128, in bone marrow stromal cells and spinal cord-derived neural stem cells. DESIGN, TIME AND SETTING: An In vitro, cell biology experiment was performed at the Department of Biotechnology, Shanxi Medical University from June 2008 to June 2009. MATERIALS: TaqMan miRNA assays were purchased from Applied Biosystems. METHODS: Rat bone marrow stromal cells were isolated and cultured using the whole-bone marrow method, and rat spinal cord-derived neural stem cells were obtained through neurosphere formation. TaqMan miRNA assays were used to measure miR-124 and miR-128 expression in bone marrow stromal cells and spinal cord-derived neural stem cells. MAIN OUTCOME MEASURES: Morphology of bone marrow stromal cells and spinal cord-derived neural stem cells were observed by inverted microscopy. Expression of the neural stem cell-specific marker, nestin, the bone marrow stromal cell surface marker, CD71, and expression of miR-124 and miR-128, were detected by real-time polymerase chain reaction. RESULTS: Cultured bone marrow stromal cells displayed a short fusiform shape. Flow cytometry revealed a large number of CD71-positive cells (〉 95%). Cultured spinal cord-derived neural stem cells formed nestin-positive neurospheres, and quantitative detection of miRNA demonstrated that less miR-124 and miR-128 was expressed in bone marrow stromal cells compared to spinal cord-derived neural stem cells (P 〈 0.05). CONCLUSION: Bone marrow stromal cells and spinal cord-derived neural stem cells exhibited differential expression of miR-124 and miR-128, which suggested different characteristics in miRNA expression. 展开更多
关键词 bone marrow stromal cells spinal cord-derived neural stem cells miR-124 miR-128 spinal cord injury
下载PDF
Optimization of adipose tissue-derived mesenchymal stromal cells transplantation for bone marrow repopulation following irradiation 被引量:1
17
作者 Min-Jung Kim Won Moon +4 位作者 Jeonghoon Heo Sangwook Lim Seung-Hyun Lee Jee-Yeong Jeong Sang Joon Lee 《World Journal of Stem Cells》 SCIE 2022年第3期245-263,共19页
BACKGROUND Bone marrow(BM)suppression is one of the most common side effects of radiotherapy and the primary cause of death following exposure to irradiation.Despite concerted efforts,there is no definitive treatment ... BACKGROUND Bone marrow(BM)suppression is one of the most common side effects of radiotherapy and the primary cause of death following exposure to irradiation.Despite concerted efforts,there is no definitive treatment method available.Recent studies have reported using mesenchymal stromal cells(MSCs),but their therapeutic effects are contested.AIM We administered and examined the effects of various amounts of adipose-derived MSCs(ADSCs)in mice with radiation-induced BM suppression.METHODS Mice were divided into three groups:Normal control group,irradiated(RT)group,and stem cell-treated group following whole-body irradiation(WBI).Mouse ADSCs(mADSCs)were transplanted into the peritoneal cavity either once or three times at 5×10^(5) cells/200μL.The white blood cell count and the levels of,plasma cytokines,BM mRNA,and BM surface markers were compared between the three groups.Human BM-derived CD34+hematopoietic progenitor cells were co-cultured with human ADSCs(hADSCs)or incubated in the presence of hADSCs conditioned media to investigate the effect on human cells in vitro.RESULTS The survival rate of mice that received one transplant of mADSCs was higher than that of mice that received three transplants.Multiple transplantations of ADSCs delayed the repopulation of BM hematopoietic stem cells.Anti-inflammatory effects and M2 polarization by intraperitoneal ADSCs might suppress erythropoiesis and induce myelopoiesis in sub-lethally RT mice.CONCLUSION The results suggested that an optimal amount of MSCs could improve survival rates post-WBI. 展开更多
关键词 Adipose tissue-derived stem cells bone marrow suppression Mesenchymal stromal cells RADIATION cell therapy
下载PDF
Effects of corneal stromal cell-and bone marrow-derived endothelial progenitor cell-conditioned media on the proliferation of corneal endothelial cells 被引量:1
18
作者 Meng-Yu Zhu Qin-Ke Yao +6 位作者 Jun-Zhao Chen Chun-Yi Shao Chen-Xi Yan Ni Ni Xian-Qun Fan Ping Gu Yao Fu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2016年第3期332-339,共8页
AIM: To explore the effects of conditioned media on the proliferation of corneal endothelial cells (CECa) and to compare the efficiency of different conditioned media (CM). METHODS: Rat CECs, corneal stromal cel... AIM: To explore the effects of conditioned media on the proliferation of corneal endothelial cells (CECa) and to compare the efficiency of different conditioned media (CM). METHODS: Rat CECs, corneal stromal cells (CSCs), bone marrow -derived endothelial progenitor cells (BEPCs), and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and cultured in vitra CM was collected from CSCs, BEPCs, and BMSCSo CECs were cultivated in different culture media. Cell morphology was recorded, and gene and protein expression were analyzed.~ RESULTS: After grown in CM for 5d, CECs in each experimental group remained polygonal, in a cobblestone- like monolayer arrangement. Immunocytofluorescence revealed positive expression of Na+/K+-ATP, aquaporin 1 (AQP1), and zonula occludens 1 (ZO-1). Based on quantitative polymerase chain reaction (qPCR) analysis, Na +/K +-ATP expression in CSC-CM was notably upregulated by 1.3-fold (+0.036) (P〈0.05, n=3). The expression levels of ZO-1, neuron specific enolase (NSE), Vimentin, paired homebox 6 (PAX6), and procollagen type VII (COL8A1) were notably upregulated in each experimental group. Each CM had a positive effect on CEC proliferation, and CSC-CM had the strongest effect on proliferation.~ CONCLUSION: CSC-CM, BEPC-CM, and BMSC-CM not only stimulated the proliferation of CECs, but also maintained the characteristic differentiated phenotypes necessary for endothelial functions. CSC-CM had the most notable effect on CEC proliferation. KEYWORDS: conditioned medium; corneal endothelial cell; corneal stromal cell; bone marrow-derived endothelial progenitor cell; proliferation 展开更多
关键词 conditioned medium corneal endothelialcell corneal stromal cell bone marrow-derived endothelialprogenitor cell PROLIFERATION
下载PDF
Feridex-labeled bone marrow stromal cells for analysis of sciatic nerve defects in rabbits
19
作者 Guitao Li Xiaojun Tang +3 位作者 Xiao He Dixin Luo Yong Qi Wangyang Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第11期846-852,共7页
BACKGROUND: Traumatic approaches, such as sacrifice and perfusion sampling, have been used to evaluate efficiency of stem cell transplantation. However, these methods are not applicable to human studies. Cell tracing... BACKGROUND: Traumatic approaches, such as sacrifice and perfusion sampling, have been used to evaluate efficiency of stem cell transplantation. However, these methods are not applicable to human studies. Cell tracing, in combination with non-invasive imaging technology, can be utilized to trace cell survival following transplantation to evaluate the efficacy of cell transplantation therapy. OBJECTIVE: To explore feasibility of magnetic resonance imaging (MRI) to observe in vivo repair of injured sciatic nerves following feridex and polylysine (FE-PLL) complex-labeled bone marrow stromal cell (BMSC) transplantation. DESIGN, TIME AND SE'I-rlNG: A randomized, controlled, animal experiment was performed at the Laboratory of the Department of Neurosurgery, Zhujiang Hospital from March to December 2008. MATERIALS: Feridex was purchased from Advanced Magnetic, USA, and polylysine was purchased from Sigma, USA. METHODS: BMSCs were harvested from adult rabbit femurs and were cultured in vitro with neural stem cell culture medium, leukemia inhibitory factor, and basic fibroblast growth factor. Bone marrow stromal cell-derived neural stem cells (BMSC-D-NSCs) were obtained and labeled with FE-PLL complex. The right sciatic nerve (0.8 mm) was excised from healthy, New Zealand rabbits, aged 1.5 months, and the epineuria of distal stumps underwent turnover and were anastomosed at the proximal ends. FE-PLL labeled BMSC-D-NSC suspension or culture medium was transplanted into the epineunal lumen using a microsyringe. The left sciatic nerve was left intact and sewed as the normal control. MAIN OUTCOME MEASURES: Cellular morphology, proliferation, and differentiation, as well as expression of nestin and neuron-specific enolase (NSE), of BMSCs-D-NSCs were observed. Efficacy of FE-PLL labeling and effects on cells were measured. In addition, neural regeneration at 2, 8, and 16 weeks following transplantation was observed by MRI. Histopathology and mean number of regenerated nerve fibers in the proximodistal-injured sciatic nerve were evaluated by hematoxylin and eosin and Bielschowsky staining. RESULTS: Results demonstrated that BMSCs expanded, proliferated, and differentiated into neural-like cells with slim, long processes. The cells expressed nestin and NSE, as detected by immunocytochemistry. BMSC-D-NSCs were effectively labeled by FE-PLL, with a labeling efficiency of 98%. In addition, cell viability was not influenced by the FE-PLL complex. MRI results revealed low signals in the FE-labeled BMSC-D-NSC-implanted region of the sciatic nerve. A low-signal region was observed at 2 weeks, which was widely spread at 8-16 weeks after cell transplantation. The regenerated nerve fibers were orderly arranged in the cell transplantation group and exhibited no significant differences compared with the normal control side (P 〉 0.05). CONCLUSION: BMSCs were successfully cultured in vitro, and the cells proliferated and trans-differentiated into neuronal-like cells, which expressed nestin and NSE. The FE-PLL complex effectively labeled rabbit BMSC-D-NSCs in vitro and did not affect peripheral neural regeneration following cell transplantation. Results demonstrated that MRI could be used to track FE-labeled BMSC-D-NSCs transplanted in the sciatic nerve. 展开更多
关键词 FERIDEX bone marrow stromal cells neural stem cells cell transplantation magnetic resonance imaging sciatic nerve RABBIT neural regeneration
下载PDF
Bone morphogenetic protein-7 induced bone marrow stromal cells differentiate into neuron-like cells
20
作者 Kuanxin Li Yuling Zhang +4 位作者 Weishan Wang Bin He Jianhua Sun Jinbo Dong Chenhui Shi 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第22期1685-1690,共6页
Bone morphogenetic protein-7 is widely accepted as an inducer for bone marrow stem cells differentiating into osteoblasts and chondrocytes. Whether bone marrow stromal cells differentiate into neuron-like cells remain... Bone morphogenetic protein-7 is widely accepted as an inducer for bone marrow stem cells differentiating into osteoblasts and chondrocytes. Whether bone marrow stromal cells differentiate into neuron-like cells remains unclear. The current study examined the presence of positive cells for intermediate filament protein and microtubule associated protein-2 in the cytoplasm of bone marrow stromal cells induced by bone morphogenetic protein-7 under an inverted microscope, while no expression of glial fibrillary acidic protein was found. Reverse transcription PCR electrophoresis also revealed a positive target band for intermediate filament protein and microtubule-associated protein 2 mRNA. These results confirmed that bone morphogenetic protein-7 induces rat bone marrow stromal cells differentiating into neuron-like cells. 展开更多
关键词 bone morphogenetic protein-7 DIFFERENTIATION bone marrow stromal cells neuron-like cells microtubule-associated protein 2 intermediate filament protein glial fibrillary acidic protein neural regeneration
下载PDF
上一页 1 2 95 下一页 到第
使用帮助 返回顶部