期刊文献+
共找到6,990篇文章
< 1 2 250 >
每页显示 20 50 100
Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis
1
作者 Xiahong Tang Nan Zheng +8 位作者 Qingming Lin Yan You Zheng Gong Yangping Zhuang Jiali Wu Yu Wang Hanlin Huang Jun Ke Feng Chen 《Neural Regeneration Research》 SCIE CAS 2025年第4期1103-1123,共21页
Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to impr... Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning. 展开更多
关键词 bone marrow–derived mesenchymal stem cells cardiac arrest cardiac resuscitation hypoxic preconditioning liver isoform of phosphofructokinase mitochondria NEUROINFLAMMATION oxidative stress PYROPTOSIS reactive oxygen species
下载PDF
Small extracellular vesicles from hypoxia-preconditioned bone marrow mesenchymal stem cells attenuate spinal cord injury via miR-146a-5p-mediated regulation of macrophage polarization 被引量:1
2
作者 Zeyan Liang Zhelun Yang +5 位作者 Haishu Xie Jian Rao Xiongjie Xu Yike Lin Chunhua Wang Chunmei Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2259-2269,共11页
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)... Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury. 展开更多
关键词 bone marrow mesenchymal stem cells hypoxia preconditioning interleukin-1 receptor-associated kinase 1 MACROPHAGES mesenchymal stem cells small extracellular vesicles spinal cord injury
下载PDF
Interplay between mesenchymal stem cells and macrophages:Promoting bone tissue repair
3
作者 Fei-Fan Zhang Yang Hao +4 位作者 Kuai-Xiang Zhang Jiang-Jia Yang Zhi-Qiang Zhao Hong-Jian Liu Ji-Tian Li 《World Journal of Stem Cells》 SCIE 2024年第4期375-388,共14页
The repair of bone tissue damage is a complex process that is well-orchestrated in time and space,a focus and difficulty in orthopedic treatment.In recent years,the success of mesenchymal stem cells(MSCs)-mediated bon... The repair of bone tissue damage is a complex process that is well-orchestrated in time and space,a focus and difficulty in orthopedic treatment.In recent years,the success of mesenchymal stem cells(MSCs)-mediated bone repair in clinical trials of large-area bone defects and bone necrosis has made it a candidate in bone tissue repair engineering and regenerative medicine.MSCs are closely related to macrophages.On one hand,MSCs regulate the immune regulatory function by influencing macrophages proliferation,infiltration,and phenotype polarization,while also affecting the osteoclasts differentiation of macrophages.On the other hand,macrophages activate MSCs and mediate the multilineage differentiation of MSCs by regulating the immune microenvironment.The cross-talk between MSCs and macrophages plays a crucial role in regulating the immune system and in promoting tissue regeneration.Making full use of the relationship between MSCs and macrophages will enhance the efficacy of MSCs therapy in bone tissue repair,and will also provide a reference for further application of MSCs in other diseases. 展开更多
关键词 bone tissue damage INFLAMMATION MACROPHAGES mesenchymal stem cells Tissue regeneration
下载PDF
Bone marrow mesenchymal stem cells in treatment of peripheral nerve injury
4
作者 Xiong-Fei Zou Bao-Zhong Zhang +1 位作者 Wen-Wei Qian Florence Mei Cheng 《World Journal of Stem Cells》 SCIE 2024年第8期799-810,共12页
Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI ... Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous trans-plantation ability.This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI.The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury.BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors,extracellular matrix molecules,and adhesion molecules.Additionally,BMSCs release pro-angiogenic factors to promote the formation of new blood vessels.They modulate cytokine expression and regulate macrophage polarization,leading to immunomodulation.Furthermore,BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration,thereby promoting neuronal repair and regeneration.Moreover,this review explores methods of applying BMSCs in PNI treatment,including direct cell trans-plantation into the injured neural tissue,implantation of BMSCs into nerve conduits providing support,and the application of genetically modified BMSCs,among others.These findings confirm the potential of BMSCs in treating PNI.However,with the development of this field,it is crucial to address issues related to BMSC therapy,including establishing standards for extracting,identifying,and cultivating BMSCs,as well as selecting application methods for BMSCs in PNI such as direct transplantation,tissue engineering,and genetic engineering.Addressing these issues will help translate current preclinical research results into clinical practice,providing new and effective treatment strategies for patients with PNI. 展开更多
关键词 bone marrow mesenchymal stem cells Peripheral nerve injury Schwann cells Myelin sheath Tissue engineering
下载PDF
Potential plausible role of Wharton’s jelly mesenchymal stem cells for diabetic bone regeneration
5
作者 Sheng Zheng Guan-Yu Hu +1 位作者 Jun-Hua Li Yi-Kai Li 《World Journal of Stem Cells》 SCIE 2024年第8期824-826,共3页
This letter addresses the review titled“Wharton’s jelly mesenchymal stem cells:Future regenerative medicine for clinical applications in mitigation of radiation injury”.The review highlights the regenerative potent... This letter addresses the review titled“Wharton’s jelly mesenchymal stem cells:Future regenerative medicine for clinical applications in mitigation of radiation injury”.The review highlights the regenerative potential of Wharton’s jelly mesenchymal stem cells(WJ-MSCs)and describes why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine.The potential plausible role of WJ-MSCs for diabetic bone regeneration should be noticeable,which will provide a new strategy for improving bone regeneration under diabetic conditions. 展开更多
关键词 Wharton’s jelly mesenchymal stem cells Vascular endothelial growth factor OSTEOGENESIS ANGIOGENESIS Diabetic bone regeneration
下载PDF
Effects of interleukin-10 treated macrophages on bone marrow mesenchymal stem cells via signal transducer and activator of transcription 3 pathway
6
作者 Meng-Hao Lyu Ce Bian +3 位作者 Yi-Ping Dou Kang Gao Jun-Ji Xu Pan Ma 《World Journal of Stem Cells》 SCIE 2024年第5期560-574,共15页
BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can sign... BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can significantly affect the progression of diseases and tissue engineering repair process.AIM To assess the influence of interleukin-10(IL-10)on the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)following their interaction with macrophages in an inflammatory environment.METHODS IL-10 modulates the differentiation of peritoneal macrophages in Wistar rats in an inflammatory environment.In this study,we investigated its impact on the proliferation,migration,and osteogenesis of BMSCs.The expression levels of signal transducer and activator of transcription 3(STAT3)and its activated form,phos-phorylated-STAT3,were examined in IL-10-stimulated macrophages.Subsequently,a specific STAT3 signaling inhibitor was used to impede STAT3 signal activation to further investigate the role of STAT3 signaling.RESULTS IL-10-stimulated macrophages underwent polarization to the M2 type through substitution,and these M2 macrophages actively facilitated the osteogenic differentiation of BMSCs.Mechanistically,STAT3 signaling plays a crucial role in the process by which IL-10 influences macrophages.Specifically,IL-10 stimulated the activation of the STAT3 signaling pathway and reduced the macrophage inflammatory response,as evidenced by its diminished impact on the osteogenic differentiation of BMSCs.CONCLUSION Stimulating macrophages with IL-10 proved effective in improving the inflammatory environment and promoting the osteogenic differentiation of BMSCs.The IL-10/STAT3 signaling pathway has emerged as a key regulator in the macrophage-mediated control of BMSCs’osteogenic differentiation. 展开更多
关键词 MACROPHAGES INTERLEUKIN-10 bone marrow mesenchymal stem cells Signal transducer and activator of transcription 3 Inflammatory response
下载PDF
A novel mutation in ROR2 led to the loss of function of ROR2 and inhibited the osteogenic differentiation capability of bone marrow mesenchymal stem cells(BMSCs)
7
作者 WENQI CHEN XIAOYANG CHU +6 位作者 YANG ZENG YOUSHENG YAN YIPENG WANG DONGLAN SUN DONGLIANG ZHANG JING ZHANG KAI YANG 《BIOCELL》 SCIE 2023年第7期1561-1569,共9页
Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study... Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study by our research group showed that a novel compound heterozygous ROR2 variation accounted for the autosomal recessive Robinow syndrome(ARRS).This study attempted to explore the impact of the ROR2:c.904C>T variant specifically on the osteogenic differentiation of BMSCs.Methods:Coimmunoprecipitation(CoIP)-western blotting was carried out to identify the interaction between ROR2 and Wnt5a.Double-immunofluorescence staining was used for determining the expressions and co-localization of ROR2 and Wnt5a in bone marrow mesenchymal stem cells(BMSCs).Western blot(WB)analysis and quantitative reverse transcription polymerase chain reaction(RT-qPCR)were conducted to identify the expression levels of ROR2 in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T.The alkaline phosphatase(ALP)activity was detected,and Alizarin Red S staining was done for evaluating the osteogenic differentiation of BMSCs.RT-qPCR was employed to identify the expression of the sphingomyelin synthase 1(SMS1)mRNA in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T and the mRNA expression levels of Runt-related transcription factor 2(RUNX2),osteocalcin(OCN),and osteopontin(OPN).WB was performed to confirm the protein expressions of extracellular regulated protein kinases1(ERK),P-ERK,Smad family member1/5/8(Smad1/5/8),P-Smad1/5/8,P-P38,P38,RUNX2,OCN,and OPN in the BMSCs transfected with LV-shROR2/LV-ROR2-c.904C>T and sphingomyelin(SM).Results:The ROR2:c.904C>T mutant altered the subcellular localization of the ROR2 protein,which caused an impaired interaction between ROR2 and Wnt5a.The depletion of ROR2 restricted the osteogenic differentiation capability of BMSCs and downregulated the expression of SMS1.SM treatment could reverse the inhibition of osteoblastic differentiation in ROR2-depleted BMSCs.Conclusion:The findings of this work revealed that the ROR2:c.904C>T variant led to the loss of function of ROR2,which impaired the interaction between ROR2 and Wnt5a and also controlled the osteogenic differentiation capability of BMSCs.Furthermore,SM was revealed to be engaged in the osteoblastic differentiation of BMSCs regulated by ROR2,which renders SM a potential target in the therapy for ARRS. 展开更多
关键词 bone marrow mesenchymal stem cells ROR2 WNT5A Osteogenic differentiation SPHINGOMYELIN
下载PDF
Bone marrow-derived mesenchymal stem cell-derived exosomeloaded miR-129-5p targets high-mobility group box 1 attenuates neurological-impairment after diabetic cerebral hemorrhage 被引量:1
8
作者 Yue-Ying Wang Ke Li +5 位作者 Jia-Jun Wang Wei Hua Qi Liu Yu-Lan Sun Ji-Ping Qi Yue-Jia Song 《World Journal of Diabetes》 SCIE 2024年第9期1979-2001,共23页
BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patie... BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patients with diabetes are unknown.In this study,we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.METHODS BMSC-exo were isolated from mouse BMSC media.This was followed by transfection with microRNA-129-5p(miR-129-5p).BMSC-exo or miR-129-5poverexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucoseaffected BV2 cells for in vitro analyses.The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1(HMGB1).Quantitative polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors,such as HMGB1,interleukin 6,interleukin 1β,toll-like receptor 4,and tumor necrosis factorα.Brain water content,neural function deficit score,and Evans blue were used to measure the neural function of mice.RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery.MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation.Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases.Furthermore,we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes,thereby improving the neurological function of the brain. 展开更多
关键词 bone marrow mesenchymal stem cells Exosome Diabetic cerebral hemorrhage Neuroinflammation MicroRNA-129-5p High mobility group box 1
下载PDF
Therapeutic and regenerative potential of different sources of mesenchymal stem cells for cardiovascular diseases
9
作者 YARA ALZGHOUL HALA J.BANI ISSA +8 位作者 AHMAD K.SANAJLEH TAQWA ALABDUH FATIMAH RABABAH MAHA AL-SHDAIFAT EJLAL ABU-EL-RUB FATIMAH ALMAHASNEH RAMADA R.KHASAWNEH AYMAN ALZU’BI HUTHAIFA MAGABLEH 《BIOCELL》 SCIE 2024年第4期559-569,共11页
Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essent... Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essential to restore heart function.MSCs can be easily isolated from different sources,including bone marrow,adipose tissues,umbilical cord,and dental pulp.MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders.In this review,we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function. 展开更多
关键词 bone marrow mesenchymal stem cells Adipose tissue mesenchymal stem cells Dental pulp stem cells Umbilical cord mesenchymal stem cells CARDIOMYOCYTES Regeneration Myocardial infarction mesenchymal stem cells DIFFERENTIATION IMMUNOMODULATION
下载PDF
Impacts of mesenchymal stem cells and hyaluronic acid on inflammatory indicators and antioxidant defense in experimental ankle osteoarthritis
10
作者 Usama Ismaeil Hagag Fatma Mohamed Halfaya +6 位作者 Hessah Mohammed Al-Muzafar Suhailah Saud Al-Jameel Kamal Adel Amin Wael Abou El-Kheir Emad A Mahdi Gamal Abdel-Nasser Ragab Hassan Osama Mohamed Ahmed 《World Journal of Orthopedics》 2024年第11期1056-1074,共19页
BACKGROUND No effective treatment guarantees full recovery from osteoarthritis(OA),and few therapies have disadvantages.AIM To determine if bone marrow mesenchymal stem cells(BMMSCs)and hyaluronic acid(HA)treat ankle ... BACKGROUND No effective treatment guarantees full recovery from osteoarthritis(OA),and few therapies have disadvantages.AIM To determine if bone marrow mesenchymal stem cells(BMMSCs)and hyaluronic acid(HA)treat ankle OA in Wistar rats.METHODS BMMSCs were characterized using flow cytometry with detection of surface markers[cluster of differentiation 90(CD90),CD105,CD34,and CD45].Fifty male Wistar rats were divided into five groups of 10 rats each:Group I,saline into the right tibiotarsal joint for 2 days;Group II,monosodium iodate(MIA)into the same joint;Groups III,MIA+BMMSCs;Group IV,MIA+HA;and Group V,MIA+BMMSCs+HA.BMMSCs(1×106 cells/rat),HA(75μg/rat),and BMMSCs(1×106 cells/rat)alongside HA(75μg/rat)were injected intra-articularly into the tibiotarsal joint of the right hind leg at the end of weeks 2,3,and 4 after the MIA injection.RESULTS The elevated right hind leg circumference values in the paw and arthritis clinical score of osteoarthritic rats were significantly ameliorated at weeks 4,5,and 6.Lipid peroxide significantly increased in the serum of osteoarthritic rats,whereas reduced serum glutathione and glutathione transferase levels were decreased.BMMSCs and HA significantly improved OA.The significantly elevated ankle matrix metalloproteinase 13(MMP-13)mRNA and transforming growth factor beta 1(TGF-β1)protein expression,and tumor necrosis factor alpha(TNF-α)and interleukin-17(IL-17)serum levels in osteoarthritic rats were significantly downregulated by BMMSCs and HA.The effects of BMMSCs and HA on serum TNF-αand IL-17 were more potent than their combination.The lowered serum IL-4 levels in osteoarthritic rats were significantly upregulated by BMMSCs and HA.Additionally,BMMSCs and HA caused a steady decrease in joint injury and cartilage degradation.CONCLUSION BMMSCs and/or HA have anti-arthritic effects mediated by antioxidant and anti-inflammatory effects on MIAinduced OA.MMP-13 and TGF-β1 expression improves BMMSCs and/or HA effects on OA in Wistar rats. 展开更多
关键词 OSTEOARTHRITIS ANTI-INFLAMMATORY ANTIOXIDANT bone marrow mesenchymal stem cells Hyaluronic acid
下载PDF
Research Progress on the Immunomodulatory Effect of Mesenchymal Stem Cells on Chronic Periodontitis
11
作者 Wenjing Wang Yi Liu 《Open Journal of Stomatology》 2024年第2期64-71,共8页
Periodontal disease is an inflammatory and destructive disease of periodontal support tissue caused by microorganisms in dental plaque. During the development of periodontal disease, host immune regulation plays an im... Periodontal disease is an inflammatory and destructive disease of periodontal support tissue caused by microorganisms in dental plaque. During the development of periodontal disease, host immune regulation plays an important role, and unnecessary excessive immune regulation often exacerbates the course of chronic periodontal disease. Mesenchymal stem cells (MSCs) are adult stem cells with self replication ability and multi-directional differentiation potential. Many studies have found that MSCs have strong immunosuppressive effects on both adaptive and innate immunity. In recent years, literature has reported that MSCs are involved in the immune regulatory effect of chronic periodontal disease, inhibiting its inflammatory response and alveolar bone resorption, but the specific regulatory mechanism has not been elucidated. This article reviews the current research status of the immune regulatory effects of MSCs on chronic periodontitis. 展开更多
关键词 mesenchymal stem cells Chronic Periodontal Disease Inflammatory Response bone Resorption Immune Regulation
下载PDF
Bone-marrow mesenchymal stem cells reduce rat intestinal ischemia-reperfusion injury, ZO-1 downregulation and tight junction disruption via a TNF-α-regulated mechanism 被引量:23
12
作者 Zhong-Yang Shen Jing Zhang +1 位作者 Hong-Li Song Wei-Ping Zheng 《World Journal of Gastroenterology》 SCIE CAS 2013年第23期3583-3595,共13页
AIM: To investigate the effect of bone-marrow mesenchymal stem cells (BM MSCs) on the intestinal mucosa barrier in ischemia/reperfusion (I/R) injury. METHODS: BM MSCs were isolated from male Sprague-Dawley rats by den... AIM: To investigate the effect of bone-marrow mesenchymal stem cells (BM MSCs) on the intestinal mucosa barrier in ischemia/reperfusion (I/R) injury. METHODS: BM MSCs were isolated from male Sprague-Dawley rats by density gradient centrifugation, cultured, and analyzed by flow cytometry. I/R injury was induced by occlusion of the superior mesenteric artery for 30 min. Rats were treated with saline, BM MSCs (via intramucosal injection) or tumor necrosis factor (TNF)-α blocking antibodies (via the tail vein). I/R injury was assessed using transmission electron microscopy, hematoxylin and eosin (HE) staining, immunohistochemistry, western blotting and enzyme linked immunosorbent assay.RESULTS: Intestinal permeability increased, tight junctions (TJs) were disrupted, and zona occludens 1 (ZO-1) was downregulated after I/R injury. BM MSCs reduced intestinal mucosal barrier destruction, ZO-1 downregulation, and TJ disruption. The morphological abnormalities after intestinal I/R injury positively correlated with serum TNF-α levels. Administration of anti-TNF-α IgG or anti-TNF-α receptor 1 antibodies attenuated the intestinal ultrastructural changes, ZO-1 downregulation, and TJ disruption. CONCLUSION: Altered serum TNF-α levels play an important role in the ability of BM MSCs to protect against intestinal I/R injury. 展开更多
关键词 bone MARROW mesenchymal stem cells Zona occludens 1 ISCHEMIA-REPERFUSION injury Intestinal MUCOSA Tumor necrosis factor-α
下载PDF
Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells 被引量:20
13
作者 Han-Tsung Liao Chien-Tzung Chen 《World Journal of Stem Cells》 SCIE CAS 2014年第3期288-295,共8页
Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the maj... Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the major factors in BTE due to the capability of self re-newal and multi-lineage differentiation. Unlike embry-onic stem cells, which are more controversial in ethical problem, adult mesenchymal stem cells are considered to be a more appropriate cell source for BTE. Bone marrow mesenchymal stem cells(BMSCs) are the ear-liest-discovered and well-known stem cell source using in BTE. However, the low stem cell yield requiring long expansion time in vitro, pain and possible morbidities during bone marrow aspiration and poor proliferation and osteogenic ability at old age impede its' clinical ap-plication. Afterwards, a new stem cell source coming from adipose tissue, so-called adipose-derived stemcells(ASCs), is found to be more suitable in clinical ap-plication because of high stem cells yield from lipoaspi-rates, faster cell proliferation and less discomfort and morbidities during harvesting procedure. However, the osteogenic capacity of ASCs is now still debated be-cause most papers described the inferior osteogenesis of ASCs than BMSCs. A better understanding of the osteogenic differences between ASCs and BMSCs is crucial for future selection of cells in clinical application for BTE. In this review, we describe the commonality and difference between BMSCs and ASCs by cell yield, cell surface markers and multiple-differentiation poten-tial. Then we compare the osteogenic capacity in vitro and bone regeneration ability in vivo between BMSCs and ASCs based on the literatures which utilized both BMSCs and ASCs simultaneously in their articles. The outcome indicated both BMSCs and ASCs exhibited the osteogenic ability to a certain extent both in-vitro and in-vivo. However, most in-vitro study papers verified the inferior osteogenesis of ASCs; conversely, in-vivo research reviews revealed more controversies in this issue. We expect the new researchers can have a quick understanding of the progress in this filed and design a more comprehensive research based on this review. 展开更多
关键词 bone MARROW mesenchymal stem cell Adi-pose-derived stem cell OSTEOGENESIS
下载PDF
Chinese preparation Xuesaitong promotes the mobilization of bone marrow mesenchymal stem cells in rats with cerebral infarction 被引量:23
14
作者 Jin-sheng Zhang Bao-xia Zhang +2 位作者 Mei-mei Du Xiao-ya Wang Wei Li 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第2期292-297,共6页
After cerebral ischemia, bone marrow mesenchymal stem cells are mobilized and travel from the bone marrow through peripheral circulation to the focal point of ischemia to initiate tissue regeneration. However, the num... After cerebral ischemia, bone marrow mesenchymal stem cells are mobilized and travel from the bone marrow through peripheral circulation to the focal point of ischemia to initiate tissue regeneration. However, the number of bone marrow mesenchymal stem cells mobilized into peripheral circulation is not enough to exert therapeutic effects, and the method by which blood circulation is promoted to remove blood stasis influences stem cell homing. The main ingredient of Xuesaitong capsules is Panax notoginseng saponins, and Xuesaitong is one of the main drugs used for promoting blood circulation and removing blood stasis. We established rat models of cerebral infarction by occlusion of the middle cerebral artery and then intragastrically administered Xuesaitong capsules(20, 40 and 60 mg/kg per day) for 28 successive days. Enzyme-linked immunosorbent assay showed that in rats with cerebral infarction, middle- and high-dose Xuesaitong significantly increased the level of stem cell factors and the number of CD117-positive cells in plasma and bone marrow and significantly decreased the number of CD54-and CD106-positive cells in plasma and bone marrow. The effect of low-dose Xuesaitong on these factors was not obvious. These findings demonstrate that middle- and high-dose Xuesaitong and hence Panax notoginseng saponins promote and increase the level and mobilization of bone marrow mesenchymal stem cells in peripheral blood. 展开更多
关键词 nerve regeneration Panax notoginseng saponin XUESAITONG bone marrow mesenchymal stem cell cerebral infarction MOBILIZATION peripheral circulation HOMING nerual regeneration
下载PDF
Effect of bone marrow mesenchymal stem cells on the Smad expression of hepatic fibrosis rats 被引量:12
15
作者 Zhen-Chang Wang Shan Yang +3 位作者 Jing-Jing Huang Song-Lin Chen Quan-Qiang Li Yuan Li 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2014年第4期321-324,共4页
Objective:To investigate the impact of bone marrow mesenchymal stem cells on Smad expression of hepatic fibrosis rats.Methods:A total of 48 adult female SD rats were randomly divided into three groups,normal control g... Objective:To investigate the impact of bone marrow mesenchymal stem cells on Smad expression of hepatic fibrosis rats.Methods:A total of 48 adult female SD rats were randomly divided into three groups,normal control group(n=10),observation group(n=19)with liver fibrosis model rats injected with BMSCs cells:model group(n=19),with liver fibrosis model rats injected with physiological saline.Serum index,TGF-β1 and Smad expression were detected.Results:TypeⅢprocollagen,Ⅳcollagen,hyaluronic acid,laminin levels of observation group were significantly lower than those of model group(P<0.05).The content and expression of TGF-β1in serum and liver tissue of observation group were significantly lower than those of model group(P<0.05).Compared with normal control group,the Smad3,Smad4 mRNA and protein expression of model group were significantly increased,the Smad7 mRNA and protein expression were significantly reduced(P<0.05).Compared with model group.Smad3,Smad4 mRNA and protein expression of observation group were significantly reduced,and Smad7 mRNA expression were significantly increased(P<0.05).Conclusions:BMSCs can regulate Smad expression to some extent,and reduce the degree of liver fibrosis. 展开更多
关键词 bone mesenchymal stem cells HEPATIC FIBROSIS RATS Smadv
下载PDF
Collagen-chitosan scaffold impregnated with bone marrow mesenchymal stem cells for treatment of traumatic brain injury 被引量:10
16
作者 Feng Yan Ming Li +7 位作者 Hong-Qi Zhang Gui-Lin Li Yang Hua Ying Shen Xun-Ming Ji Chuan-Jie Wu Hong An Ming Ren 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第10期1780-1786,共7页
Combinations of biomaterials and cells can effectively target delivery of cells or other therapeutic factors to the brain to rebuild damaged nerve pathways after brain injury.Porous collagen-chitosan scaffolds were pr... Combinations of biomaterials and cells can effectively target delivery of cells or other therapeutic factors to the brain to rebuild damaged nerve pathways after brain injury.Porous collagen-chitosan scaffolds were prepared by a freeze-drying method based on brain tissue engineering.The scaffolds were impregnated with rat bone marrow mesenchymal stem cells.A traumatic brain injury rat model was established using the 300 g weight free fall impact method.Bone marrow mesenchymal stem cells/collagen-chitosan scaffolds were implanted into the injured brain.Modified neurological severity scores were used to assess the recovery of neurological function.The Morris water maze was employed to determine spatial learning and memory abilities.Hematoxylin-eosin staining was performed to measure pathological changes in brain tissue.Immunohistochemistry was performed for vascular endothelial growth factor and for 5-bromo-2-deoxyuridine(BrdU)/neuron specific enolase and BrdU/glial fibrillary acidic protein.Our results demonstrated that the transplantation of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds to traumatic brain injury rats remarkably reduced modified neurological severity scores,shortened the average latency of the Morris water maze,increased the number of platform crossings,diminished the degeneration of damaged brain tissue,and increased the positive reaction of vascular endothelial growth factor in the transplantation and surrounding areas.At 14 days after transplantation,increased BrdU/glial fibrillary acidic protein expression and decreased BrdU/neuron specific enolase expression were observed in bone marrow mesenchymal stem cells in the injured area.The therapeutic effect of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds was superior to stereotactic injection of bone marrow mesenchymal stem cells alone.To test the biocompatibility and immunogenicity of bone marrow mesenchymal stem cells and collagen-chitosan scaffolds,immunosuppressive cyclosporine was intravenously injected 12 hours before transplantation and 1-5 days after transplantation.The above indicators were similar to those of rats treated with bone marrow mesenchymal stem cells and collagen-chitosan scaffolds only.These findings indicate that transplantation of bone marrow mesenchymal stem cells in a collagen-chitosan scaffold can promote the recovery of neuropathological injury in rats with traumatic brain injury.This approach has the potential to be developed as a treatment for traumatic brain injury in humans.All experimental procedures were approved by the Institutional Animal Investigation Committee of Capital Medical University,China(approval No.AEEI-2015-035)in December 2015. 展开更多
关键词 nerve REGENERATION stem cells COLLAGEN chitosan scaffolds traumatic BRAIN injury bone MARROW mesenchymal stem cells BRAIN tissue engineering neural REGENERATION
下载PDF
Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells 被引量:36
17
作者 Raquel Taléns-Visconti Ana Bonora +4 位作者 Ramiro Jover Vicente Mirabet Francisco Carbonell José Vicente Castell María José Gómez-Lechón 《World Journal of Gastroenterology》 SCIE CAS CSCD 2006年第36期5834-5845,共12页
AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into h... AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into hepatic cells in vivo has been described. Adipose tissue represents an accessible source of ADSC, with similar characteristics to BMSC. METHODS: BMSCs were obtained from patients undergoing total hip arthroplasty and ADSC from human adipose tissue obtained from lipectomy. Cells were grown in medium containing 15% human serum. Cultures were serum deprived for 2 d before cultivating under similar pro-hepatogenic conditions to those of liver development using a 2-step protocol with sequential addition of growth factors, cytokines and hormones. Hepatic differentiation was RT-PCR-assessed and liver-marker genes were immunohistochemically analysed.RESULTS: BMSC and ADSC exhibited a fibroblastic morphology that changed to a polygonal shape when cells differentiated. Expression of stem cell marker Thyl decreased in differentiated ADSC and BMSC. However, the expression of the hepatic markers, albumin and CYPs increased to a similar extent in differentiated BMSC and ADSC. Hepatic gene activation could be attributed to increased liver-enriched transcription factors (C/EBPβ and HNF4α), as demonstrated by adenoviral expression vectors.CONCLUSION: Mesenchymal stem cells can be induced to hepatogenic transdifferentiation in vitro. ADSCs have a similar hepatogenic differentiation potential to BMSC, but a longer culture period and higher proliferation capacity. Therefore, adipose tissue may be an ideal source of large amounts of autologous stem cells, and may become an alternative for hepatocyte regeneration, liver cell transplantation or preclinical drug testing. 展开更多
关键词 mesenchymal stem cells bone marrow Adipose tissue TRANSDIFFERENTIATION Hepatic lineage Liver cell transplantation.
下载PDF
Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells 被引量:16
18
作者 Defeng Zou Yi Chen +2 位作者 Yaxin Han Chen Lv Guanjun Tu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第12期1241-1248,共8页
microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesen... microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs in bone marrow-derived mesen- chymal stem cells, neural stem cells and neurons, miR-124 expression was substantially reduced in bone marrow-derived mesenchymal stem cells compared with the other cell types. We con- structed a lentiviral vector overexpressing miR-124 and transfected it into bone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markers [3-III tu- bulin and microtubule-associated protein-2 were significantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These re- sults suggest that miR-124 plays an important role in the differentiation of bone marrow-derived mesenchymal stem cells into neurons. Our findings should facilitate the development of novel strategies for enhancing the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for spinal cord injury. 展开更多
关键词 nerve regeneration microRNA-124 LENTIVIRUS OVEREXPRESSION bone marrow-de-rived mesenchymal stem cells neural stern cells spinal cord injury NEUROGENESIS GENECHIP motor function NSFC grant neural regeneration
下载PDF
Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy 被引量:16
19
作者 Fei Yin Chunyang Meng +5 位作者 Rifeng Lu Lei Li Ying Zhang Hao Chen Yonggang Qin Li Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第18期1665-1671,共7页
Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans- plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are kno... Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans- plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as- sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur- thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro- filament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes- enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration bone marrow mesenchymal stem cells spinal cord ischemia/reperfusioninjury axonal growth AUTOPHAGY REPAIR NSFC grant neural regeneration
下载PDF
Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury 被引量:10
20
作者 Chun Zhang Xijing He +1 位作者 Haopeng Li Guoyu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第11期965-974,共10页
As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment op... As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury. 展开更多
关键词 neural regeneration spinal cord injury stem cells chondroitin sulfate proteoglycans ASTROCYTES glial scar chondroitinase ABC bone marrow mesenchymal stem cells TRANSPLANTATION chemicalbarrier NEUROREGENERATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部