To evaluate the long-term consequence of repetitive mild traumatic brain injury (mTBI) on bone, mTBI was induced in 10-week-old female C57BL/6J mice using a weight drop model, once per day for 4 consecutive days at ...To evaluate the long-term consequence of repetitive mild traumatic brain injury (mTBI) on bone, mTBI was induced in 10-week-old female C57BL/6J mice using a weight drop model, once per day for 4 consecutive days at different drop heights (0.5, 1 and 1.5 m) and the skeletal phenotype was evaluated at different time points after the impact. In vivo micro-CT (μ-CT) analysis of the tibial metaphysis at 2, 8 and 12 weeks after the impact revealed a 5%-32% reduction in trabecular bone mass. Histomorphometric analyses showed a reduced bone formation rate in the secondary spongiosa ofl.5 m impacted mice at 12 weeks post impact. Apparent modulus (bone strength), was reduced by 30% (P 〈 0.05) at the proximal tibial metaphysis in the 1.5 m drop height group at 2 and 8 weeks post impact. Ex vivo μ-CT analysis of the fifth lumbar vertebra revealed a significant reduction in trabecular bone mass at 12 weeks of age in all three drop height groups. Serum levels of osteocalcin were decreased by 22%, 15%, and 19% in the 0.5, 1.0 and 1.5 m drop height groups, respectively, at 2 weeks post impact. Serum IGF-I levels were reduced by 18%-32% in mTBI mice compared to control mice at 2 weeks post impact. Serum osteocalcin and IGF-I levels correlated with trabecular BV/TV (r2 = 0.14 and 0.16, P 〈 0.05). In conclusion, repetitive mTBI exerts significant negative effects on the trabecular bone microarchitecture and bone mechanical properties by influencing osteoblast function via reduced endocrine IGF-I actions.展开更多
Ovotransferrin,an iron-binding glycoprotein,accounting for approximately 12%of egg white protein,is a member of transferrin fam ily.Our previous studies showed that ovotransferrin stimulates the proliferation and diff...Ovotransferrin,an iron-binding glycoprotein,accounting for approximately 12%of egg white protein,is a member of transferrin fam ily.Our previous studies showed that ovotransferrin stimulates the proliferation and differentiation of osteoblasts,while inhibits osteoclastogenesis and resorption activity.The work aims to study the efficacy of orally administered ovotransferrin on the prevention of osteoporosis using ovariectomized(OVX)Sprague-Dawley rats.Oral administration of ovotransferrin showed no negative effect on body weight,food intake and organ weight.After 12-week treatment,feeding ovotransferrin at a dose of 1%(1 g ovotransferrin/100 g diet)prevented OVX-induced bone loss and maintained relatively high bone mineral density and integrated bone microarchitecture.The serum concentration of biomarkers indicating bone formation was increased in ovotransferrin administration groups,while the bone resorption biomarkers were decreased.Ovotransferrin feeding also decreased the production of serum cytokine TNF-αand IL-6,which are two stimulators for osteoclast differentiation.In addition to its direct regulatory role on bone turnover,ovotransferrin supplementation might benefit osteoporosis prevention by inhibiting adipogenesis,and regulating immune response.Our results suggested the potential application of ovotransferrin as a functional food ingredient on the prevention of osteoporosis.展开更多
Micro-computed tomography can be applied for the assessment of the micro-architectural characteristics of the cortical and trabecular bones in either physiological or disease conditions. However, reports often lack a ...Micro-computed tomography can be applied for the assessment of the micro-architectural characteristics of the cortical and trabecular bones in either physiological or disease conditions. However, reports often lack a detailed description of the methodological steps used to analyse these images, such as the volumes of interest, the algorithms used for image filtration, the approach used for image segmentation, and the bone parameters quantified, thereby making it difficult to compare or reproduce the studies. This study addresses this critical need and aims to provide standardized assessment and consistent parameter reporting related to quantitative jawbone image analysis. Various regions of the rat jawbones were screened for their potential for standardized micro-computed tomography analysis. Furthermore, the volumes of interest that were anticipated to be most susceptible to bone structural changes in response to experimental interventions were defined. In the mandible, two volumes of interest were selected, namely, the condyle and the trabecular bone surrounding the three molars. In the maxilla, the maxillary tuberosity region and the inter-radicular septum of the second molar were considered as volumes of interest. The presented protocol provides a standardized and reproducible methodology for the analysis of relevant jawbone volumes of interest and is intended to ensure global, accurate, and consistent reporting of its morphometry. Furthermore, the proposed methodology has potential, as a variety of rodent animal models would benefit from its implementation.展开更多
Background A new treatment strategy is to target specific areas of the skeletal system that are prone to clinically significant osteoporotic fractures.We term this strategy as the "local treatment of osteoporosis".T...Background A new treatment strategy is to target specific areas of the skeletal system that are prone to clinically significant osteoporotic fractures.We term this strategy as the "local treatment of osteoporosis".The study was performed to investigate the effect of alendronate-loaded calcium phosphate cement (CPC) as a novel drug delivery system for local treatment of osteoorosis.Methods An in vitro study was performed using CPC fabricated with different concentrations of alendronate (ALE,0,2,5,10 weight percent (wt%)).The microstructure,setting time,infrared spectrum,biomechanics,drug release,and biocompatibility of the composite were measured in order to detect changes when mixing CPC with ALE.An in vivo study was also performed using 30 Sprague-Dawley rats randomly divided into six groups:normal,Sham (ovariectomized (OVX) + Sham),CPC with 2% ALE,5%ALE,and 10% ALE groups.At 4 months after the implantation of the composite,animals were sacrificed and the caudal vertebrae (levels 4-7) were harvested for micro-CT examination and biomechanical testing.Results The setting time and strength of CPC was significantly faster and greater than the other groups.The ALE release was sustained over 21 days,and the composite showed good biocompatibility.In micro-CT analysis,compared with the Sham group,there was a significant increase with regard to volumetric bone mineral density (BMD) and trabecular number (Tb.N) in the treated groups (P <0.05).Trabecular spacing (Tb.Sp) showed a significant increase in the Sham group compared to other groups (P <0.01).However,trabecular thickness (Tb.Th) showed no significant difference among the groups.In biomechanical testing,the maximum compression strength and stiffness of trabecular bone in the Sham group were lower than those in the experimental groups.Conclusions The ALE-loaded CPC displayed satisfactory properties in vitro,which can reverse the OVX rat vertebral trabecular bone microarchitecture and biomechanical properties in vivo.展开更多
基金supported by funding from a Veterans Administration BLR&D merit review grant 1–101-BX-002717 to Dr Subburaman Mohan
文摘To evaluate the long-term consequence of repetitive mild traumatic brain injury (mTBI) on bone, mTBI was induced in 10-week-old female C57BL/6J mice using a weight drop model, once per day for 4 consecutive days at different drop heights (0.5, 1 and 1.5 m) and the skeletal phenotype was evaluated at different time points after the impact. In vivo micro-CT (μ-CT) analysis of the tibial metaphysis at 2, 8 and 12 weeks after the impact revealed a 5%-32% reduction in trabecular bone mass. Histomorphometric analyses showed a reduced bone formation rate in the secondary spongiosa ofl.5 m impacted mice at 12 weeks post impact. Apparent modulus (bone strength), was reduced by 30% (P 〈 0.05) at the proximal tibial metaphysis in the 1.5 m drop height group at 2 and 8 weeks post impact. Ex vivo μ-CT analysis of the fifth lumbar vertebra revealed a significant reduction in trabecular bone mass at 12 weeks of age in all three drop height groups. Serum levels of osteocalcin were decreased by 22%, 15%, and 19% in the 0.5, 1.0 and 1.5 m drop height groups, respectively, at 2 weeks post impact. Serum IGF-I levels were reduced by 18%-32% in mTBI mice compared to control mice at 2 weeks post impact. Serum osteocalcin and IGF-I levels correlated with trabecular BV/TV (r2 = 0.14 and 0.16, P 〈 0.05). In conclusion, repetitive mTBI exerts significant negative effects on the trabecular bone microarchitecture and bone mechanical properties by influencing osteoblast function via reduced endocrine IGF-I actions.
基金funded by grants from Egg Farmers of Canada,Global Egg Corp.,and Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘Ovotransferrin,an iron-binding glycoprotein,accounting for approximately 12%of egg white protein,is a member of transferrin fam ily.Our previous studies showed that ovotransferrin stimulates the proliferation and differentiation of osteoblasts,while inhibits osteoclastogenesis and resorption activity.The work aims to study the efficacy of orally administered ovotransferrin on the prevention of osteoporosis using ovariectomized(OVX)Sprague-Dawley rats.Oral administration of ovotransferrin showed no negative effect on body weight,food intake and organ weight.After 12-week treatment,feeding ovotransferrin at a dose of 1%(1 g ovotransferrin/100 g diet)prevented OVX-induced bone loss and maintained relatively high bone mineral density and integrated bone microarchitecture.The serum concentration of biomarkers indicating bone formation was increased in ovotransferrin administration groups,while the bone resorption biomarkers were decreased.Ovotransferrin feeding also decreased the production of serum cytokine TNF-αand IL-6,which are two stimulators for osteoclast differentiation.In addition to its direct regulatory role on bone turnover,ovotransferrin supplementation might benefit osteoporosis prevention by inhibiting adipogenesis,and regulating immune response.Our results suggested the potential application of ovotransferrin as a functional food ingredient on the prevention of osteoporosis.
基金funded by the Fund for Scientific Research-Flanders(FWO)(G.0726.09)supported by postdoctoral researcher C Correa(2014/0892-1),University of Campinas,Brazil(245450/2012-2)postdoctoral researcher F Faot,Federal University of Pelotas,Brazil
文摘Micro-computed tomography can be applied for the assessment of the micro-architectural characteristics of the cortical and trabecular bones in either physiological or disease conditions. However, reports often lack a detailed description of the methodological steps used to analyse these images, such as the volumes of interest, the algorithms used for image filtration, the approach used for image segmentation, and the bone parameters quantified, thereby making it difficult to compare or reproduce the studies. This study addresses this critical need and aims to provide standardized assessment and consistent parameter reporting related to quantitative jawbone image analysis. Various regions of the rat jawbones were screened for their potential for standardized micro-computed tomography analysis. Furthermore, the volumes of interest that were anticipated to be most susceptible to bone structural changes in response to experimental interventions were defined. In the mandible, two volumes of interest were selected, namely, the condyle and the trabecular bone surrounding the three molars. In the maxilla, the maxillary tuberosity region and the inter-radicular septum of the second molar were considered as volumes of interest. The presented protocol provides a standardized and reproducible methodology for the analysis of relevant jawbone volumes of interest and is intended to ensure global, accurate, and consistent reporting of its morphometry. Furthermore, the proposed methodology has potential, as a variety of rodent animal models would benefit from its implementation.
文摘Background A new treatment strategy is to target specific areas of the skeletal system that are prone to clinically significant osteoporotic fractures.We term this strategy as the "local treatment of osteoporosis".The study was performed to investigate the effect of alendronate-loaded calcium phosphate cement (CPC) as a novel drug delivery system for local treatment of osteoorosis.Methods An in vitro study was performed using CPC fabricated with different concentrations of alendronate (ALE,0,2,5,10 weight percent (wt%)).The microstructure,setting time,infrared spectrum,biomechanics,drug release,and biocompatibility of the composite were measured in order to detect changes when mixing CPC with ALE.An in vivo study was also performed using 30 Sprague-Dawley rats randomly divided into six groups:normal,Sham (ovariectomized (OVX) + Sham),CPC with 2% ALE,5%ALE,and 10% ALE groups.At 4 months after the implantation of the composite,animals were sacrificed and the caudal vertebrae (levels 4-7) were harvested for micro-CT examination and biomechanical testing.Results The setting time and strength of CPC was significantly faster and greater than the other groups.The ALE release was sustained over 21 days,and the composite showed good biocompatibility.In micro-CT analysis,compared with the Sham group,there was a significant increase with regard to volumetric bone mineral density (BMD) and trabecular number (Tb.N) in the treated groups (P <0.05).Trabecular spacing (Tb.Sp) showed a significant increase in the Sham group compared to other groups (P <0.01).However,trabecular thickness (Tb.Th) showed no significant difference among the groups.In biomechanical testing,the maximum compression strength and stiffness of trabecular bone in the Sham group were lower than those in the experimental groups.Conclusions The ALE-loaded CPC displayed satisfactory properties in vitro,which can reverse the OVX rat vertebral trabecular bone microarchitecture and biomechanical properties in vivo.