BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma...BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.展开更多
AIM: To investigate the influence of bone morphogenetic protein type IA receptor [BMPR-IA(ALK3)] conditional knockout in lens on expression of bone morphogenetic protein 4(BMP4) in lens during the development of the v...AIM: To investigate the influence of bone morphogenetic protein type IA receptor [BMPR-IA(ALK3)] conditional knockout in lens on expression of bone morphogenetic protein 4(BMP4) in lens during the development of the vertebrate eye.METHODS: Cre-positive mice were mated with Crenegative mice to generate 50% Cre-positive(conditional knockout, CKO) 4 embryos, 8 eyes and 50% Cre-negative offspring(wild type, WT) 4 embryos, 8 eyes. The embryos were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned to a thickness of 4 μm.Removal of paraffin wax and dehydrating for sections,and then the procedure of in situ hybridization was processed, BMP4 MK1784-m(BOSTER) was used, and observed the expression of BMP4 in the lens in experimental group and control group. We selected SPSS11.0 software for statistical analysis, P【0.05 showed that the difference was statistically significant.· RESULTS: Four embryos of each genotype were examined, totally we had 8 embryos, 16 eyes. We got the uniform outcomes in all the embryos. We found ALK3 was required during lens growing, but was not essential for the formation of lens. We observed that the expression of BMP4 in the lens was significantly reduced in all 8 ALK3 CKO lens, BMP4 expression was normal in all the 8 WT lens, P 【0.01. This phenomenon became increasingly visible in accordance with embryo development. The most apparent alteration was present at stage E15.5.CONCLUSION: ALK3 is essential for lens growth. The influence of ALK3 on the expression of BMP4 is present during the development of mice lens.展开更多
Human embryonic stem cells (hESC) can be induced to differentiate to trophoblast by bone morphogenetic proteins (BMPs) and by aggregation to form embryoid bodies (EB), but there are many differences and controversies ...Human embryonic stem cells (hESC) can be induced to differentiate to trophoblast by bone morphogenetic proteins (BMPs) and by aggregation to form embryoid bodies (EB), but there are many differences and controversies regarding the nature of the differentiated cells. Our goals herein were to determine if BG02 cells form trophoblast-like cells (a) in the presence of BMP4-plus-basic fibroblast growth factor (FGF-2) and (b) upon EB formation, and (c) whether the BMP4 antagonist noggin elicits direct effects on gene expression and hormone production in the cells. Transcriptome profiling of hESC incubated with BMP4/FGF-2 showed a down-regulation of pluripotency-associated genes, an up-regulation of trophoblast-associated genes, and either a down-regulation or no change in gene expression for many markers of the three embryonic germ layers. Yet, there was up-regulation of several genes associated with mesoderm, ectoderm, and endoderm, strongly suggesting that differentiation to trophoblast-like cells under the conditions used does not yield a homogeneous cell type. Several genes, heretofore unreported, were identified that are altered in hESC in response to BMP4-mediated differentiation. The production of human chorionic gonadotropin (hCG), progesterone, and estradiol in the differentiated cells confirmed that trophoblast-like cells were obtained. Gene expression by EB was characterized by an up-regulation of a number of genes associated with trophoblast, ectoderm, endoderm, and mesoderm, and the production of hCG and progesterone confirmed that trophoblast-like cells were formed. These results suggest that, in the presence of FGF-2, BG02 cells respond to BMP4 to yield trophoblast-like cells, which are also obtained upon EB formation. Thus, BMP4-mediated differentiation of hESC represents a viable cell system for studying early developmental events post-implantation;however, up-regulation of non-trophoblast genes suggests a somewhat diverse response to BMP4/FGF-2. Noggin altered the transcription of a limited number of genes but, not surprisingly, did not lead to secretion of hormones.展开更多
BACKGROUND: Previous experiments have confirmed bone morphogenetic proteins (BMPs) upregulate cholinergic expression in neurons isolated from the embryonic rat hippocampus and cerebral cortex. Therefore, BMPs could...BACKGROUND: Previous experiments have confirmed bone morphogenetic proteins (BMPs) upregulate cholinergic expression in neurons isolated from the embryonic rat hippocampus and cerebral cortex. Therefore, BMPs could be useful for treating Alzheimer's disease and other neurodegenerative diseases. OBJECTIVE: BMP-4 was infused into the hippocampal dentate gyrus of fomix-fimbria transected rats to test the effects of BMP-4 on cholinergic expression in dentate gyrus neurons, and to observe changes in spatial memory behavior. DESIGN: A randomized controlled animal experiment. SETTING: Department of Neurosurgery and Laboratory for Cell Biology, Institute of Geriatrics, General Hospital of Chinese PLA. MATERIALS: Twenty-seven healthy adult male Sprague Dawley (SD) rats, weighing 250-300 g, were provided by the Laboratory Animal Center of the General Hospital of Chinese PLA. Reagents: BMP-4 (B-2680, Sigma Company) and choline acetyl transferase (CHAT) antibody (AB5042, Chemicon Company) were used in this study. Equipments: a rat stereotaxic instrument (type: SN-2N, Narushige Group, Japan) and Image-prog-plus image analysis software (Media Cybernetics company, USA) were used in this study. The protocol was carried out in accordance with ethical guidelines for the use and care of animals. METHODS: This experiment was performed in the Institute of Geriatrics, General Hospital of Chinese PLA between July 2004 and March 2005. Rats were randomly divided into 4 groups: Alzheimer's disease group (n = 7), normal control group (n = 5), BMP-4-Alzheimer's disease group (n = 8), and model group (n = 7). In the Alzheimer's disease group, the left hippocampal fomix-fimbria of rats was transected to mimic Alzheimer's disease symptoms. In the BMP-4-Alzheimer's disease group, 1 μt L BMP-4 (10 mg/L) was perfused into the left dentate gyrus with a microinjector at 1 μ L/min. In the model group, 1 μ L saline was perfused into the same position by the same method. Twenty-eight days after injection, Morris water maze test was performed in all rats to test spatial memory. Time-to-platform and swim-path length were recorded. Immunohistochemical staining of cholinergic neurons was performed on brain sections containing dentate gyrus. The area covered by ChAT-positive cells was analyzed using an Image-prog-plus image analysis software. MAIN OUTCOME MEASURES: Area covered by ChAT-positive cells in the dentate gyrus. Time-to-platform and swim path-length. RESULTS: Twenty-seven rats were included in the final analysis. In the Alzheimer's disease group, the area covered by ChAT-positive cells was significantly smaller compared with the normal control group (F = 76.03, P 〈 0.01). The area covered by ChAT-positive cells was significantly larger in the BMP-4- Alzheimer's disease group than in the model group (F = 35.17, P 〈 0.05), but significantly smaller than in the normal control group (F = 40.17, P 〈 0.05). Time-to-platform and swim-path length were significantly longer in the Alzheimer's disease group than in the normal control group (F =24.62 and 631.58, respectively, both P 〈 0.05). Time-to-platform and swim-path length were significantly shorter in the BMP4-Alzheimer's disease group compared with the model group (F= 22.06 and 606.89, respectively P 〈 0.05). CONCLUSION: Injection of BMP-4 into the dentate gyrus of Alzheimer's disease model rats alleviates central cholinergic system injury and concomitantly improves spatial memory.展开更多
Objective To study the effects of combination of bone morphogenetic protein-2 (BMP-2) and strontium chloride on proliferation and osteogenic differentiation of human umbilical cord mesenchymal stem cells(hUCM-SCs)in v...Objective To study the effects of combination of bone morphogenetic protein-2 (BMP-2) and strontium chloride on proliferation and osteogenic differentiation of human umbilical cord mesenchymal stem cells(hUCM-SCs)in vitro culture.展开更多
To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The ...To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The cells in passage 3 were induced into chondrogenic differentiation with different concentrations of recombinant human cartilage-derived morphogenetic proteins-2 (0, 10, 20, 50 and 100 ng/mL). After 14 days of induction, morphology of cells was observed under phase-contrast microscope. Collagen Ⅱ mRNA and protein were examined with RT-PCR, Western blotting and immunocytochemistry respectively and the sulfate glycosaminoglycan was measured by Alcian blue staining. RT-PCR showed that CDMP-2 could promote expression of collagen Ⅱ mRNA in an dose-dependant manner, especially at the concentration of 50 ng/mL and 100 ng/mL. Immunocytochemistry and Western blotting revealed a similar change. Alcian blue staining exhibited deposition of typical cartilage extracellular matrix. Our results suggest that mouse bone marrow mesencymal stem cells can differentiate into chondrogenic phonotype with the induction of CDMP-2 in vitro, which provides a basis for further research on the role of CDMP-2 in chondrogenesis.展开更多
背景:课题组以往研究证实,骨形态发生蛋白4对生长发育期下颌骨的生长有促进作用,而骨形态发生蛋白2是否能与骨形态发生蛋白4相互促进下颌骨生长目前未见有相关报道。目的:检测生长发育高峰期骨性Ⅱ类错畸形患者血液中骨形态发生蛋白2...背景:课题组以往研究证实,骨形态发生蛋白4对生长发育期下颌骨的生长有促进作用,而骨形态发生蛋白2是否能与骨形态发生蛋白4相互促进下颌骨生长目前未见有相关报道。目的:检测生长发育高峰期骨性Ⅱ类错畸形患者血液中骨形态发生蛋白2和骨形态发生蛋白4的表达情况,以探究骨形态发生蛋白2和骨形态发生蛋白4的表达量与下颌骨生长的关系。方法:生长发育高峰期骨性Ⅰ类错畸形患者为Ⅰ组,以下颌后缩为主的骨性Ⅱ类错畸形患者为Ⅱ组,每组18人。采用实时荧光定量PCR(RT-PCR)分别检测两组血液骨形态发生蛋白2和骨形态发生蛋白4的表达。结果与结论:骨性Ⅱ类错畸形组中骨形态发生蛋白2 mR NA的表达量明显低于对照组骨性Ⅰ类错畸形组(P<0.05),骨性Ⅱ类错畸形组中骨形态发生蛋白4 m RNA的表达量明显低于对照组骨性Ⅰ类错畸形组(P<0.05),骨性Ⅱ组中骨形态发生蛋白2与骨形态发生蛋白4的表达有显著相关性。结果证实,骨形态发生蛋白2和骨形态发生蛋白4在生长发育高峰期的表达量均降低与下颌骨发育不足有密切关系,且骨形态发生蛋白2和骨形态发生蛋白4相互协同,共同参与调节下颌骨的生长。展开更多
文摘BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.
基金Supported by National Natural Science Foundation of China(No.30872836)Natural Science Foundation of Liaoning Province,China(No.201102054)
文摘AIM: To investigate the influence of bone morphogenetic protein type IA receptor [BMPR-IA(ALK3)] conditional knockout in lens on expression of bone morphogenetic protein 4(BMP4) in lens during the development of the vertebrate eye.METHODS: Cre-positive mice were mated with Crenegative mice to generate 50% Cre-positive(conditional knockout, CKO) 4 embryos, 8 eyes and 50% Cre-negative offspring(wild type, WT) 4 embryos, 8 eyes. The embryos were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned to a thickness of 4 μm.Removal of paraffin wax and dehydrating for sections,and then the procedure of in situ hybridization was processed, BMP4 MK1784-m(BOSTER) was used, and observed the expression of BMP4 in the lens in experimental group and control group. We selected SPSS11.0 software for statistical analysis, P【0.05 showed that the difference was statistically significant.· RESULTS: Four embryos of each genotype were examined, totally we had 8 embryos, 16 eyes. We got the uniform outcomes in all the embryos. We found ALK3 was required during lens growing, but was not essential for the formation of lens. We observed that the expression of BMP4 in the lens was significantly reduced in all 8 ALK3 CKO lens, BMP4 expression was normal in all the 8 WT lens, P 【0.01. This phenomenon became increasingly visible in accordance with embryo development. The most apparent alteration was present at stage E15.5.CONCLUSION: ALK3 is essential for lens growth. The influence of ALK3 on the expression of BMP4 is present during the development of mice lens.
文摘Human embryonic stem cells (hESC) can be induced to differentiate to trophoblast by bone morphogenetic proteins (BMPs) and by aggregation to form embryoid bodies (EB), but there are many differences and controversies regarding the nature of the differentiated cells. Our goals herein were to determine if BG02 cells form trophoblast-like cells (a) in the presence of BMP4-plus-basic fibroblast growth factor (FGF-2) and (b) upon EB formation, and (c) whether the BMP4 antagonist noggin elicits direct effects on gene expression and hormone production in the cells. Transcriptome profiling of hESC incubated with BMP4/FGF-2 showed a down-regulation of pluripotency-associated genes, an up-regulation of trophoblast-associated genes, and either a down-regulation or no change in gene expression for many markers of the three embryonic germ layers. Yet, there was up-regulation of several genes associated with mesoderm, ectoderm, and endoderm, strongly suggesting that differentiation to trophoblast-like cells under the conditions used does not yield a homogeneous cell type. Several genes, heretofore unreported, were identified that are altered in hESC in response to BMP4-mediated differentiation. The production of human chorionic gonadotropin (hCG), progesterone, and estradiol in the differentiated cells confirmed that trophoblast-like cells were obtained. Gene expression by EB was characterized by an up-regulation of a number of genes associated with trophoblast, ectoderm, endoderm, and mesoderm, and the production of hCG and progesterone confirmed that trophoblast-like cells were formed. These results suggest that, in the presence of FGF-2, BG02 cells respond to BMP4 to yield trophoblast-like cells, which are also obtained upon EB formation. Thus, BMP4-mediated differentiation of hESC represents a viable cell system for studying early developmental events post-implantation;however, up-regulation of non-trophoblast genes suggests a somewhat diverse response to BMP4/FGF-2. Noggin altered the transcription of a limited number of genes but, not surprisingly, did not lead to secretion of hormones.
文摘BACKGROUND: Previous experiments have confirmed bone morphogenetic proteins (BMPs) upregulate cholinergic expression in neurons isolated from the embryonic rat hippocampus and cerebral cortex. Therefore, BMPs could be useful for treating Alzheimer's disease and other neurodegenerative diseases. OBJECTIVE: BMP-4 was infused into the hippocampal dentate gyrus of fomix-fimbria transected rats to test the effects of BMP-4 on cholinergic expression in dentate gyrus neurons, and to observe changes in spatial memory behavior. DESIGN: A randomized controlled animal experiment. SETTING: Department of Neurosurgery and Laboratory for Cell Biology, Institute of Geriatrics, General Hospital of Chinese PLA. MATERIALS: Twenty-seven healthy adult male Sprague Dawley (SD) rats, weighing 250-300 g, were provided by the Laboratory Animal Center of the General Hospital of Chinese PLA. Reagents: BMP-4 (B-2680, Sigma Company) and choline acetyl transferase (CHAT) antibody (AB5042, Chemicon Company) were used in this study. Equipments: a rat stereotaxic instrument (type: SN-2N, Narushige Group, Japan) and Image-prog-plus image analysis software (Media Cybernetics company, USA) were used in this study. The protocol was carried out in accordance with ethical guidelines for the use and care of animals. METHODS: This experiment was performed in the Institute of Geriatrics, General Hospital of Chinese PLA between July 2004 and March 2005. Rats were randomly divided into 4 groups: Alzheimer's disease group (n = 7), normal control group (n = 5), BMP-4-Alzheimer's disease group (n = 8), and model group (n = 7). In the Alzheimer's disease group, the left hippocampal fomix-fimbria of rats was transected to mimic Alzheimer's disease symptoms. In the BMP-4-Alzheimer's disease group, 1 μt L BMP-4 (10 mg/L) was perfused into the left dentate gyrus with a microinjector at 1 μ L/min. In the model group, 1 μ L saline was perfused into the same position by the same method. Twenty-eight days after injection, Morris water maze test was performed in all rats to test spatial memory. Time-to-platform and swim-path length were recorded. Immunohistochemical staining of cholinergic neurons was performed on brain sections containing dentate gyrus. The area covered by ChAT-positive cells was analyzed using an Image-prog-plus image analysis software. MAIN OUTCOME MEASURES: Area covered by ChAT-positive cells in the dentate gyrus. Time-to-platform and swim path-length. RESULTS: Twenty-seven rats were included in the final analysis. In the Alzheimer's disease group, the area covered by ChAT-positive cells was significantly smaller compared with the normal control group (F = 76.03, P 〈 0.01). The area covered by ChAT-positive cells was significantly larger in the BMP-4- Alzheimer's disease group than in the model group (F = 35.17, P 〈 0.05), but significantly smaller than in the normal control group (F = 40.17, P 〈 0.05). Time-to-platform and swim-path length were significantly longer in the Alzheimer's disease group than in the normal control group (F =24.62 and 631.58, respectively, both P 〈 0.05). Time-to-platform and swim-path length were significantly shorter in the BMP4-Alzheimer's disease group compared with the model group (F= 22.06 and 606.89, respectively P 〈 0.05). CONCLUSION: Injection of BMP-4 into the dentate gyrus of Alzheimer's disease model rats alleviates central cholinergic system injury and concomitantly improves spatial memory.
文摘Objective To study the effects of combination of bone morphogenetic protein-2 (BMP-2) and strontium chloride on proliferation and osteogenic differentiation of human umbilical cord mesenchymal stem cells(hUCM-SCs)in vitro culture.
基金This project was supported by a grant from the National Natural Sciences Foundation of China (No 30471753)
文摘To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The cells in passage 3 were induced into chondrogenic differentiation with different concentrations of recombinant human cartilage-derived morphogenetic proteins-2 (0, 10, 20, 50 and 100 ng/mL). After 14 days of induction, morphology of cells was observed under phase-contrast microscope. Collagen Ⅱ mRNA and protein were examined with RT-PCR, Western blotting and immunocytochemistry respectively and the sulfate glycosaminoglycan was measured by Alcian blue staining. RT-PCR showed that CDMP-2 could promote expression of collagen Ⅱ mRNA in an dose-dependant manner, especially at the concentration of 50 ng/mL and 100 ng/mL. Immunocytochemistry and Western blotting revealed a similar change. Alcian blue staining exhibited deposition of typical cartilage extracellular matrix. Our results suggest that mouse bone marrow mesencymal stem cells can differentiate into chondrogenic phonotype with the induction of CDMP-2 in vitro, which provides a basis for further research on the role of CDMP-2 in chondrogenesis.
文摘目的:骨形态发生蛋白-4(bone morphogenentic protein-4,BMP4)在动脉粥样硬化(atherosclerosis,AS)的病理过程中具有重要调节作用,但相关的临床研究较少。本研究拟观察以AS为主要病理特点的动脉阻塞性疾病(arterial occlusive disease,ACD)患者血浆BMP4的表达情况,并分析血浆中BMP4与炎症因子和血管损伤标志物之间的相关性。方法:共招募38名诊断为ACD的患者(ACD组)和38名体检志愿者(对照组),抽取ACD组患者术前和对照组体检时的静脉血,比较2组血常规指标的差异。采用酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)检测血浆中BMP4、肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白细胞介素(interleukin,IL)-1β、IL-10及血管内皮钙黏蛋白(vascular endothelial cadherin,VE-cadherin)的表达变化,并进一步分析BMP4与以上各指标之间的相关性。结果:与对照组相比,ACD组患者血常规结果表现为中性粒细胞-淋巴细胞比值[neutrophil to lymphocyte ratio,NLR;1.63(1.26,1.91)vs 3.43(2.16,6.61)]和血小板-淋巴细胞比值[platelet to lymphocyte ratio,PLR;6.37(5.26,7.74)vs 15.79(7.97,20.53)]升高、淋巴细胞-单核细胞比值[lymphocyte to monocyte ratio,LMR;5.67(4.41,7.14)vs3.43(2.07,3.74)]下降(均P<0.05);ACD组患者血浆BMP4[581.26(389.85,735.64)pg/mL vs 653.97(510.95,890.43)pg/mL]、TNF-α[254.16(182.96,340.70)pg/mLvs293.29(238.90,383.44)pg/mL]及内皮标志物VE-cadherin[1.54(1.08,2.13)ng/mL vs 1.85(1.30,2.54)ng/mL]的水平均显著升高,而抗炎因子IL-10的水平显著下降[175.89(118.39,219.25)pg/mLvs135.92(95.80,178.04)pg/mL](均P<0.05)。2组间促炎因子IL-1β的差异无统计学意义[300.39(205.39,403.56)pg/mL vs 378.46(243.20,448.69)pg/mL;P=0.09]。相关分析结果表明:血浆BMP4水平与促炎因子IL-1β(r=0.35)、TNF-α(r=0.31)以及内皮标志物VE-cadherin(r=0.47)呈正相关,与抗炎因子IL-10呈负相关(r=-0.37;均P<0.01)。结论:ACD患者血浆BMP4的水平升高,且与患者的炎症水平和血管损伤程度具有相关性。
文摘背景:课题组以往研究证实,骨形态发生蛋白4对生长发育期下颌骨的生长有促进作用,而骨形态发生蛋白2是否能与骨形态发生蛋白4相互促进下颌骨生长目前未见有相关报道。目的:检测生长发育高峰期骨性Ⅱ类错畸形患者血液中骨形态发生蛋白2和骨形态发生蛋白4的表达情况,以探究骨形态发生蛋白2和骨形态发生蛋白4的表达量与下颌骨生长的关系。方法:生长发育高峰期骨性Ⅰ类错畸形患者为Ⅰ组,以下颌后缩为主的骨性Ⅱ类错畸形患者为Ⅱ组,每组18人。采用实时荧光定量PCR(RT-PCR)分别检测两组血液骨形态发生蛋白2和骨形态发生蛋白4的表达。结果与结论:骨性Ⅱ类错畸形组中骨形态发生蛋白2 mR NA的表达量明显低于对照组骨性Ⅰ类错畸形组(P<0.05),骨性Ⅱ类错畸形组中骨形态发生蛋白4 m RNA的表达量明显低于对照组骨性Ⅰ类错畸形组(P<0.05),骨性Ⅱ组中骨形态发生蛋白2与骨形态发生蛋白4的表达有显著相关性。结果证实,骨形态发生蛋白2和骨形态发生蛋白4在生长发育高峰期的表达量均降低与下颌骨发育不足有密切关系,且骨形态发生蛋白2和骨形态发生蛋白4相互协同,共同参与调节下颌骨的生长。