Peripheral nerve injury(PNI)is a common disease that is difficult to nerve regeneration with current therapies.Fortunately,Zou et al demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells(BM...Peripheral nerve injury(PNI)is a common disease that is difficult to nerve regeneration with current therapies.Fortunately,Zou et al demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells(BMSCs)in promoting nerve regeneration,revealing broad prospects for BMSCs trans-plantation in alleviating PNI.We confirmed the fact that BMSCs significantly alleviate PNI,but there are shortcomings such as low cell survival rate and immune rejection,which limit the wide application of BMSCs.BMSCs-derived exosomes(Exos)are considered as a promising cell-free nanomedicine for PNI,avoiding the ethical issues of BMSCs.Exos in combination with bioengineering therapeutics(including extracellular matrix,hydrogel)brings new hope for PNI,provides a favorable microenvironment for neurological restoration and a therapeutic strategy with a favorable safety profile,significantly increases ex-pression of neurotrophic factors,promotes axonal and myelin regeneration,and demonstrates a strong potential to enhance neurogenesis.Therefore,engineered Exos exhibit better properties,such as stronger targeting and more beneficial components.This article briefly describes the role of nanotechnology and bioe-ngineering therapies for BMSCs in PNI,proposes clinical application prospects and challenges of nanotechnology and bioengineering BMSCs-derived Exos in PNI to improve the efficacy of BMSCs in the treatment of PNI.展开更多
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)...Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.展开更多
Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI ...Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous trans-plantation ability.This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI.The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury.BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors,extracellular matrix molecules,and adhesion molecules.Additionally,BMSCs release pro-angiogenic factors to promote the formation of new blood vessels.They modulate cytokine expression and regulate macrophage polarization,leading to immunomodulation.Furthermore,BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration,thereby promoting neuronal repair and regeneration.Moreover,this review explores methods of applying BMSCs in PNI treatment,including direct cell trans-plantation into the injured neural tissue,implantation of BMSCs into nerve conduits providing support,and the application of genetically modified BMSCs,among others.These findings confirm the potential of BMSCs in treating PNI.However,with the development of this field,it is crucial to address issues related to BMSC therapy,including establishing standards for extracting,identifying,and cultivating BMSCs,as well as selecting application methods for BMSCs in PNI such as direct transplantation,tissue engineering,and genetic engineering.Addressing these issues will help translate current preclinical research results into clinical practice,providing new and effective treatment strategies for patients with PNI.展开更多
Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve rep...Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.展开更多
Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to impr...Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning.展开更多
The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical ...The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration.Inspired by bioelectricity,electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix,thereby accelerating bone regeneration.With ongoing advances in biomaterials and energy-harvesting techniques,electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue.In this review,we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue.Next,we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering.Finally,we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.展开更多
Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychoso...Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord.展开更多
Traumatic spinal cord injury(SCI)is a devastating exogenous injury with long-lasting consequences and a leading cause of death and disability worldwide.Advances in assistive technology,rehabilitative interventions,and...Traumatic spinal cord injury(SCI)is a devastating exogenous injury with long-lasting consequences and a leading cause of death and disability worldwide.Advances in assistive technology,rehabilitative interventions,and the ability to identify and intervene in secondary conditions have significantly increased the long-term survival rate of SCI patients,with some people even living well into their seventh or eighth decade.These survival changes have led neurotrauma researchers to examine how SCI interacts with brain aging.Public health and epidemiological data showed that patients with long-term SCI can have a lower life expectancy and quality of life,along with a higher risk of comorbidities and complications.展开更多
Spinal cord injury(SCI)can cause motor and sensory paralysis,and autonomic nervous system disorders including malfunction of urination and defecation,thereby significantly impairing the quality of life.Researchers con...Spinal cord injury(SCI)can cause motor and sensory paralysis,and autonomic nervous system disorders including malfunction of urination and defecation,thereby significantly impairing the quality of life.Researchers continue to explo re new stem cell strategies for the treatment of paralysis by transpla nting human induced pluripotent stem cell-derived neural ste m/progenitor cells(hiPSCNS/PCs)into spinal cord injured tissues.展开更多
Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external sudden physical force or shock to the head.It is considered a silent public health epidemic causing significant death and disab...Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external sudden physical force or shock to the head.It is considered a silent public health epidemic causing significant death and disability globally.There were 64,000 TBI related deaths reported in the USA in 2020,with about US$76 billion in direct and indirect medical costs annually.展开更多
Advanced microsystems in traumatic brain injury research:Traumatic brain injury(TBI)results from a mechanical insult to the brain,leading to neuronal and axonal damage and subsequently causing a secondary injury.Withi...Advanced microsystems in traumatic brain injury research:Traumatic brain injury(TBI)results from a mechanical insult to the brain,leading to neuronal and axonal damage and subsequently causing a secondary injury.Within minutes of TBI,a neuroinflammatory response is triggered,driven by intricate molecular and cellular inflammatory processes.展开更多
Stress signaling following axon injury stimulates a transcriptional program for regeneration that might be exploited to promote central nervous system repair.However,this stress response drives neuronal apoptosis in n...Stress signaling following axon injury stimulates a transcriptional program for regeneration that might be exploited to promote central nervous system repair.However,this stress response drives neuronal apoptosis in non-regenerative environments.This duality presents a quandary for the development of therapeutic interventions:manipulating stress signaling to enhance recovery of damaged neurons risks accelerating neurodegeneration or restricting regenerative potential.This dichotomy is well illustrated by the fates of retinal ganglion cells(RGCs)following optic nerve crush.In this central nervous system injury model,disruption of a stress-activated MAP kinase(MAPK)cascade blocks the extensive apoptosis of RGCs that occurs in wild-type mice(Watkins et al.,2013;Welsbie et al.,2017).展开更多
Spinal cord injury(SCI)involves an initial traumatic phase,followed by secondary events such as ischemia,increased blood-spinal cord barrier permeability,ionic disruption,glutamate excitotoxicity,and metabolic alterat...Spinal cord injury(SCI)involves an initial traumatic phase,followed by secondary events such as ischemia,increased blood-spinal cord barrier permeability,ionic disruption,glutamate excitotoxicity,and metabolic alterations.A pe rsistent and exagge rated inflammato ry response within the spinal cord accompanies these events(Lima et al.,2022).The complexity and interplay of these mechanisms exacerbate the initial injury,leading to a degenerative process at the injury site.While the initial trauma is unavoidable,the secondary injury begins within minutes and can last for months,creating an optimal window for therapeutic intervention.展开更多
Functional recovery from central nervous system(CNS)trauma depends not only on axon regeneration or compensatory sprouting of uninjured fibers but also on the ability of newly grown axons to establish functional synap...Functional recovery from central nervous system(CNS)trauma depends not only on axon regeneration or compensatory sprouting of uninjured fibers but also on the ability of newly grown axons to establish functional synapses with appropriate targets.Although several studies have successfully promoted long-distance axonal regeneration in distinct CNS injury models,none of them have resulted in a viable therapeutic approach for patient recovery.A possible reason may be the lack of new synaptogenesis for reestablishing the circuitry lost after injury.Herein,we discuss how our understanding of the mechanisms that instruct synapse formation in the injured nervous system may contribute to the design of new strategies to promote functional restoration in traumatic CNS disorders.展开更多
Extensive neurodegeneration is a hallmark of traumatic spinal cord injury (SCI) that underlies permanent sensorimotor and autonomic impairments (Alizadeh et al.,2019).Following the primary impact,the spinal cord under...Extensive neurodegeneration is a hallmark of traumatic spinal cord injury (SCI) that underlies permanent sensorimotor and autonomic impairments (Alizadeh et al.,2019).Following the primary impact,the spinal cord undergoes a cascade of secondary injury mechanisms that are driven by disruption of the blood-spinal cord ba rrier,vascula r inju ry,glial reactivity,neu roinfla mmation,oxidative stress,lipid peroxidation,and glutamate excitotoxicity that culminate in neuronal and oligodendroglial cell death,demyelination,and axonal damage(Alizadeh et al.,2019).To achieve a meaningful functional recovery after SCI,regeneration of new neurons and oligodendrocytes and their successful growth and integration within the neural network are critical steps for reconstructing the damaged spinal cord tissue (Fischer et al.,2020).展开更多
BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of th...BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of the radius associated with a 9 cm bone defect,which was filled with a large allogeneic cortical bone graft from a bone bank.Complete bony union was achieved after 14 months of follow-up.Previous studies have used autogenous bone as the primary bone source for the Masquelet technique;in our case,the exclusive use of allografts is as successful as the use of autologous bone grafts.With the advent of bone banks,it is possible to obtain an unlimited amount of allograft,and the Masquelet technique may be further improved based on this new way of bone grafting.CASE SUMMARY In this study,we reported a case of repair of a long bone defect in a 40-year-old male patient,which was characterized by the utilization of allograft cortical bone combined with the Masquelet technique for the treatment of the patient's long bone defect in the forearm.The patient's results of functional recovery of the forearm were surprising,which further deepens the scope of application of Masquelet technique and helps to strengthen the efficacy of Masquelet technique in the treatment of long bones indeed.CONCLUSION Allograft cortical bone combined with the Masquelet technique provides a new method of treatment to large bone defect.展开更多
Brain injuries like ischemic stroke induce endogenous stem cell production. Although the precise traits of stem cells in pathological brains remain unclear, we previously demonstrated that injury/ischemia-induced stem...Brain injuries like ischemic stroke induce endogenous stem cell production. Although the precise traits of stem cells in pathological brains remain unclear, we previously demonstrated that injury/ischemia-induced stem cells(iSCs)are present in the post-stroke mouse(Nakagomi et al.,2009)and human brains(Beppu et al.,2019).展开更多
Acute central nervous system injuries,including ischemic stro ke,intracerebral hemorrhage,subarachnoid hemorrhage,traumatic brain injury,and spinal co rd injury,are a major global health challenge.Identifying optimal ...Acute central nervous system injuries,including ischemic stro ke,intracerebral hemorrhage,subarachnoid hemorrhage,traumatic brain injury,and spinal co rd injury,are a major global health challenge.Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities.Mitochondria are susceptible to damage after acute central nervous system injury,and this leads to the release of toxic levels of reactive oxygen species,which induce cell death.Mitophagy,a selective form of autophagy,is crucial in eliminating redundant or damaged mitochondria during these events.Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries.In this review,we provide a comprehensive overview of the process,classification,and related mechanisms of mitophagy.We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy.In the final section of this review,we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area.展开更多
Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires senso...Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires sensorimotor transformations in several structures of the brain,including the parietal cortex,premotor cortex,and motor cortex.Sensory information and planning are transformed into motor commands,which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory,coordinate the limbs,and maintain balance.After spinal cord injury,bidirectional communication between the brain and spinal cord is disrupted and animals,including humans,fail to voluntarily modify limb trajectory to step over an obstacle.Therefore,in this review,we discuss the neuromechanical control of stepping over an obstacle,why it fails after spinal cord injury,and how it recovers to a certain extent.展开更多
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
基金Supported by the Tianjin Graduate Research Innovation Project&TUTCM Graduate Research Innovation Project,No.YJSKC-20231012.
文摘Peripheral nerve injury(PNI)is a common disease that is difficult to nerve regeneration with current therapies.Fortunately,Zou et al demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells(BMSCs)in promoting nerve regeneration,revealing broad prospects for BMSCs trans-plantation in alleviating PNI.We confirmed the fact that BMSCs significantly alleviate PNI,but there are shortcomings such as low cell survival rate and immune rejection,which limit the wide application of BMSCs.BMSCs-derived exosomes(Exos)are considered as a promising cell-free nanomedicine for PNI,avoiding the ethical issues of BMSCs.Exos in combination with bioengineering therapeutics(including extracellular matrix,hydrogel)brings new hope for PNI,provides a favorable microenvironment for neurological restoration and a therapeutic strategy with a favorable safety profile,significantly increases ex-pression of neurotrophic factors,promotes axonal and myelin regeneration,and demonstrates a strong potential to enhance neurogenesis.Therefore,engineered Exos exhibit better properties,such as stronger targeting and more beneficial components.This article briefly describes the role of nanotechnology and bioe-ngineering therapies for BMSCs in PNI,proposes clinical application prospects and challenges of nanotechnology and bioengineering BMSCs-derived Exos in PNI to improve the efficacy of BMSCs in the treatment of PNI.
基金supported by the Fujian Minimally Invasive Medical Center Foundation,No.2128100514(to CC,CW,HX)the Natural Science Foundation of Fujian Province,No.2023J01640(to CC,CW,ZL,HX)。
文摘Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.
基金CAMS Innovation Fund for Medical Sciences,No.2022-I2M-C&T-B-034.
文摘Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous trans-plantation ability.This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI.The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury.BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors,extracellular matrix molecules,and adhesion molecules.Additionally,BMSCs release pro-angiogenic factors to promote the formation of new blood vessels.They modulate cytokine expression and regulate macrophage polarization,leading to immunomodulation.Furthermore,BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration,thereby promoting neuronal repair and regeneration.Moreover,this review explores methods of applying BMSCs in PNI treatment,including direct cell trans-plantation into the injured neural tissue,implantation of BMSCs into nerve conduits providing support,and the application of genetically modified BMSCs,among others.These findings confirm the potential of BMSCs in treating PNI.However,with the development of this field,it is crucial to address issues related to BMSC therapy,including establishing standards for extracting,identifying,and cultivating BMSCs,as well as selecting application methods for BMSCs in PNI such as direct transplantation,tissue engineering,and genetic engineering.Addressing these issues will help translate current preclinical research results into clinical practice,providing new and effective treatment strategies for patients with PNI.
基金supported by the National Natural Science Foundation of China,No.31870977(to HYS)the National Key Technologies Research and Development Program of China,No.2017YFA0104700(to FD)+2 种基金2022 Jiangsu Funding Program for Excellent Postdoctoral Talent(to MC)Priority Academic Program Development of Jiangsu Higher Education Institutions[PAPD]the Major Project of Basic Science(Natural Science)Research in Higher Education Institutions of Jiangsu Province,No.22KJA180001(to QRH)。
文摘Our previous study found that rat bone marrow–derived neural crest cells(acting as Schwann cell progenitors)have the potential to promote long-distance nerve repair.Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication.Nevertheless,the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear.To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves,we collected conditioned culture medium from hypoxia-pretreated neural crest cells,and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation.The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells.We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells.Subsequently,to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons,we used a microfluidic axonal dissociation model of sensory neurons in vitro,and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons,which was greatly dependent on loaded miR-21-5p.Finally,we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb,as well as muscle tissue morphology of the hind limbs,were obviously restored.These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p.miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome.This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves,and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.
基金supported by the Natural Science Fund of Fujian Province,No.2020J011058(to JK)the Project of Fujian Provincial Hospital for High-level Hospital Construction,No.2020HSJJ12(to JK)+1 种基金the Fujian Provincial Finance Department Special Fund,No.(2021)848(to FC)the Fujian Provincial Major Scientific and Technological Special Projects on Health,No.2022ZD01008(to FC).
文摘Cardiac arrest can lead to severe neurological impairment as a result of inflammation,mitochondrial dysfunction,and post-cardiopulmonary resuscitation neurological damage.Hypoxic preconditioning has been shown to improve migration and survival of bone marrow–derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest,but the specific mechanisms by which hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown.To this end,we established an in vitro co-culture model of bone marrow–derived mesenchymal stem cells and oxygen–glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis,possibly through inhibition of the MAPK and nuclear factor κB pathways.Subsequently,we transplanted hypoxia-preconditioned bone marrow–derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia.The results showed that hypoxia-preconditioned bone marrow–derived mesenchymal stem cells significantly reduced cardiac arrest–induced neuronal pyroptosis,oxidative stress,and mitochondrial damage,whereas knockdown of the liver isoform of phosphofructokinase in bone marrow–derived mesenchymal stem cells inhibited these effects.To conclude,hypoxia-preconditioned bone marrow–derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest,and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning.
基金support of the National Natural Science Foundation of China(Grant No.52205593)Shaanxi Natural Science Foundation Project(2024JC-YBMS-711).
文摘The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration.Inspired by bioelectricity,electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix,thereby accelerating bone regeneration.With ongoing advances in biomaterials and energy-harvesting techniques,electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue.In this review,we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue.Next,we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering.Finally,we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.
文摘Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord.
基金supported by NIH funding(RF1NS110637,2RF1NS094527,R01NS110635)to JW.
文摘Traumatic spinal cord injury(SCI)is a devastating exogenous injury with long-lasting consequences and a leading cause of death and disability worldwide.Advances in assistive technology,rehabilitative interventions,and the ability to identify and intervene in secondary conditions have significantly increased the long-term survival rate of SCI patients,with some people even living well into their seventh or eighth decade.These survival changes have led neurotrauma researchers to examine how SCI interacts with brain aging.Public health and epidemiological data showed that patients with long-term SCI can have a lower life expectancy and quality of life,along with a higher risk of comorbidities and complications.
基金supported by the Keio University Medical Science Fund(to YO)the General Insurance Association of Japan(to YK)+1 种基金the Takeda Science Foundation(to YK)grants from the Japan Agency for Medical Research and Development(AMED)(Grant JP24bm1123037 and JP24ym0126118)(to HO)。
文摘Spinal cord injury(SCI)can cause motor and sensory paralysis,and autonomic nervous system disorders including malfunction of urination and defecation,thereby significantly impairing the quality of life.Researchers continue to explo re new stem cell strategies for the treatment of paralysis by transpla nting human induced pluripotent stem cell-derived neural ste m/progenitor cells(hiPSCNS/PCs)into spinal cord injured tissues.
文摘Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external sudden physical force or shock to the head.It is considered a silent public health epidemic causing significant death and disability globally.There were 64,000 TBI related deaths reported in the USA in 2020,with about US$76 billion in direct and indirect medical costs annually.
基金FEDER Prostem Research Project,No.1510614(Wallonia DG06)the F.R.S.-FNRS Epiforce Project,No.T.0092.21+4 种基金the F.R.S.-FNRS Cell Squeezer Project,No.J.0061.23the F.R.S.-FNRS Optopattern Project,No.U.NO26.22the Interreg MAT(T)ISSE Project,which is financially supported by Interreg France-Wallonie-Vlaanderen(Fonds Européen de Développement Régional,FEDER-ERDF)Programme Wallon d’Investissement Région Wallone pour les instruments d’imagerie(INSTIMAG UMONS#1910169)support from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(AdG grant agreement no.834317,Fueling Transport,PI Frédéric Saudou)。
文摘Advanced microsystems in traumatic brain injury research:Traumatic brain injury(TBI)results from a mechanical insult to the brain,leading to neuronal and axonal damage and subsequently causing a secondary injury.Within minutes of TBI,a neuroinflammatory response is triggered,driven by intricate molecular and cellular inflammatory processes.
基金supported by grants from Mission Connect, a project of the TIRR Foundation, the Glaucoma Research FoundationNIH grants R01NS112691 and R01NS076708 (to TAW)
文摘Stress signaling following axon injury stimulates a transcriptional program for regeneration that might be exploited to promote central nervous system repair.However,this stress response drives neuronal apoptosis in non-regenerative environments.This duality presents a quandary for the development of therapeutic interventions:manipulating stress signaling to enhance recovery of damaged neurons risks accelerating neurodegeneration or restricting regenerative potential.This dichotomy is well illustrated by the fates of retinal ganglion cells(RGCs)following optic nerve crush.In this central nervous system injury model,disruption of a stress-activated MAP kinase(MAPK)cascade blocks the extensive apoptosis of RGCs that occurs in wild-type mice(Watkins et al.,2013;Welsbie et al.,2017).
基金funded by national funds,through the Foundation for Science and Technology(FCT)-project UIDB/50026/2020,UIDP/50026/2020(to NAS),EXPL/MEDPAT/0931/2021(to SM)Financial support was provided by Prémios Santa Casa Neurociências-Prize Melo e Castro for Spinal Cord Injury Research(MC-18-2021)+2 种基金Wings For Life Spinal Cord Research Foundation(WFL-PT-14/23)"la Caixa"Foundation(HR23-00484)(to NAS)the FCT for the Scientific Employment Stimulus to NAS and SM(CEECIND/04794/2017 and CEECIND/01902/2017)。
文摘Spinal cord injury(SCI)involves an initial traumatic phase,followed by secondary events such as ischemia,increased blood-spinal cord barrier permeability,ionic disruption,glutamate excitotoxicity,and metabolic alterations.A pe rsistent and exagge rated inflammato ry response within the spinal cord accompanies these events(Lima et al.,2022).The complexity and interplay of these mechanisms exacerbate the initial injury,leading to a degenerative process at the injury site.While the initial trauma is unavoidable,the secondary injury begins within minutes and can last for months,creating an optimal window for therapeutic intervention.
基金supported by“la Caixa”Foundation(ID 100010434)FCT-Fundacao para a Ciência e a Tecnologia,I.P.under the agreement LCF/PR/HP20/52300001 and by FCT,I.P.,under projects PTDC/NAN-OPT/7989/2020,UIDB/04501/2020,UIDP/04501/2020,UIDB/04539/2020,UIDP/04539/2020 and LA/P/0058/2020 and through the individual grant SFRH/BD/139368/2018(DT)。
文摘Functional recovery from central nervous system(CNS)trauma depends not only on axon regeneration or compensatory sprouting of uninjured fibers but also on the ability of newly grown axons to establish functional synapses with appropriate targets.Although several studies have successfully promoted long-distance axonal regeneration in distinct CNS injury models,none of them have resulted in a viable therapeutic approach for patient recovery.A possible reason may be the lack of new synaptogenesis for reestablishing the circuitry lost after injury.Herein,we discuss how our understanding of the mechanisms that instruct synapse formation in the injured nervous system may contribute to the design of new strategies to promote functional restoration in traumatic CNS disorders.
基金funding support from the Canadian Institutes of Health Researchsupported by a Doctoral Studentship from the Wings for Life Foundation。
文摘Extensive neurodegeneration is a hallmark of traumatic spinal cord injury (SCI) that underlies permanent sensorimotor and autonomic impairments (Alizadeh et al.,2019).Following the primary impact,the spinal cord undergoes a cascade of secondary injury mechanisms that are driven by disruption of the blood-spinal cord ba rrier,vascula r inju ry,glial reactivity,neu roinfla mmation,oxidative stress,lipid peroxidation,and glutamate excitotoxicity that culminate in neuronal and oligodendroglial cell death,demyelination,and axonal damage(Alizadeh et al.,2019).To achieve a meaningful functional recovery after SCI,regeneration of new neurons and oligodendrocytes and their successful growth and integration within the neural network are critical steps for reconstructing the damaged spinal cord tissue (Fischer et al.,2020).
文摘BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of the radius associated with a 9 cm bone defect,which was filled with a large allogeneic cortical bone graft from a bone bank.Complete bony union was achieved after 14 months of follow-up.Previous studies have used autogenous bone as the primary bone source for the Masquelet technique;in our case,the exclusive use of allografts is as successful as the use of autologous bone grafts.With the advent of bone banks,it is possible to obtain an unlimited amount of allograft,and the Masquelet technique may be further improved based on this new way of bone grafting.CASE SUMMARY In this study,we reported a case of repair of a long bone defect in a 40-year-old male patient,which was characterized by the utilization of allograft cortical bone combined with the Masquelet technique for the treatment of the patient's long bone defect in the forearm.The patient's results of functional recovery of the forearm were surprising,which further deepens the scope of application of Masquelet technique and helps to strengthen the efficacy of Masquelet technique in the treatment of long bones indeed.CONCLUSION Allograft cortical bone combined with the Masquelet technique provides a new method of treatment to large bone defect.
基金partially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (15K0672318K07380)the Japan Agency for Medical Research and Development (AMED) (21nk0101538h0002) (to TN)。
文摘Brain injuries like ischemic stroke induce endogenous stem cell production. Although the precise traits of stem cells in pathological brains remain unclear, we previously demonstrated that injury/ischemia-induced stem cells(iSCs)are present in the post-stroke mouse(Nakagomi et al.,2009)and human brains(Beppu et al.,2019).
基金supported by the National Natural Science Foundation of China,Nos.81920108017(to YX),82130036(to YX),82371326(to XC),82171310(to XC)the STI2030-Major Projects,No.2022ZD0211800(to YX)Jiangsu Province Key Medical Discipline,No.ZDXK202216(to YX)。
文摘Acute central nervous system injuries,including ischemic stro ke,intracerebral hemorrhage,subarachnoid hemorrhage,traumatic brain injury,and spinal co rd injury,are a major global health challenge.Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities.Mitochondria are susceptible to damage after acute central nervous system injury,and this leads to the release of toxic levels of reactive oxygen species,which induce cell death.Mitophagy,a selective form of autophagy,is crucial in eliminating redundant or damaged mitochondria during these events.Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries.In this review,we provide a comprehensive overview of the process,classification,and related mechanisms of mitophagy.We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy.In the final section of this review,we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area.
文摘Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires sensorimotor transformations in several structures of the brain,including the parietal cortex,premotor cortex,and motor cortex.Sensory information and planning are transformed into motor commands,which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory,coordinate the limbs,and maintain balance.After spinal cord injury,bidirectional communication between the brain and spinal cord is disrupted and animals,including humans,fail to voluntarily modify limb trajectory to step over an obstacle.Therefore,in this review,we discuss the neuromechanical control of stepping over an obstacle,why it fails after spinal cord injury,and how it recovers to a certain extent.
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.