Fracture-cave reservoirs in carbonate rocks are characterized by a large difference in fracture and cavity size,and a sharp variation in lithology and velocity,thereby resulting in complex diffraction responses.Some s...Fracture-cave reservoirs in carbonate rocks are characterized by a large difference in fracture and cavity size,and a sharp variation in lithology and velocity,thereby resulting in complex diffraction responses.Some small-scale fractures and caves cause weak diffraction energy and would be obscured by the continuous reflection layer in the imaging section,thereby making them difficult to identify.This paper develops a diffraction wave imaging method in the dip domain,which can improve the resolution of small-scale diffractors in the imaging section.Common imaging gathers(CIGs)in the dip domain are extracted by Gaussian beam migration.In accordance with the geometric differences of the diffraction being quasilinear and the reflection being quasiparabolic in the dip-domain CIGs,we use slope analysis technique to filter waves and use Hanning window function to improve the diffraction wave separation level.The diffraction dip-domain CIGs are stacked horizontally to obtain diffraction imaging results.Wavefield separation analysis and numerical modeling results show that the slope analysis method,together with Hanning window filtering,can better suppress noise to obtain the diffraction dip-domain CIGs,thereby improving the clarity of the diffractors in the diffraction imaging section.展开更多
Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fra...Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fractures,etc.Diffraction imaging is an important method to identify small-scale geological bodies and it has higher resolution than reflection imaging.In the common-offset domain,reflections are mostly expressed as smooth linear events,whereas diffractions are characterized by hyperbolic events.This paper proposes a diffraction extraction method based on double sparse transforms.The linear events can be sparsely expressed by the high-resolution linear Radon transform,and the curved events can be sparsely expressed by the Curvelet transform.A sparse inversion model is built and the alternating direction method is used to solve the inversion model.Simulation data and field data experimental results proved that the diffractions extraction method based on double sparse transforms can effectively improve the imaging quality of faults and other small-scale geological bodies.展开更多
Separation of arteries and veins in the cerebral cortex is of significant importance in the studies of cortical hemodynamics,such as the changes of cerebral blood flow,perfusion or oxygen con-centration in arteries an...Separation of arteries and veins in the cerebral cortex is of significant importance in the studies of cortical hemodynamics,such as the changes of cerebral blood flow,perfusion or oxygen con-centration in arteries and veins under different pathological and physiological conditions.Yet the cerebral vessel segmentation and vessel-type separation are challenging due to the complexity of cortical vessel characteristics and low spatial signal-to-noise ratio.In this work,we presented an effective full-field method to differentiate arteries and veins in cerebral cortex using dual-modal optical imaging technology including laser speckle imaging(LSI)and optical intrinsic signals(OIS)imaging.The raw contrast images were acquired by LSI and processed with enhanced laser speckle contrast analysis(eLASCA),algorithm.The vascular pattern was extracted and seg-mented using region growing algorithm from the eLASCA-based LSI.Meanwhile,OIS imageswere acquired altermatively with 630 and 870 nm to obtain an oxy hemoglobin concentration mapover cerebral cortex.Then the separation of arteries and veins was accomplished by Otsuthreshold segmentation algorithm based on the OIS information and segmentation of LSI.Finally,the segmentation and separation performances were assessed using area overlap measure(AOM).The segmentation and separation of cerebral vessels in cortical optical imaging have great potential applications in full-field cerebral hemodynamics monitoring and pathological study of cerebral vascular diseases,as well as in clinical intraoperative monitoring.展开更多
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso...Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.展开更多
In this paper, we theoretically and numerically study a combined monopole–dipole measurement mode to show its capability to overcome the issues encountered in conventional single-well imaging, i.e., the low signal-to...In this paper, we theoretically and numerically study a combined monopole–dipole measurement mode to show its capability to overcome the issues encountered in conventional single-well imaging, i.e., the low signal-to-noise ratio of the reflections and azimuth ambiguity. First, the azimuth ambiguity, which exists extensively in conventional single-well imaging, is solved with an improved imaging procedure using combined monopole–dipole logging data in addition to conventional logging data. Furthermore, we demonstrate that the direct waves propagating along the boreholes with strong energy, can be effectively eliminated with the proposed combined monopole–dipole measurement mode. The reflections are therefore predominant in the combined monopole–dipole data even before the signals are filtered; thus, the reflections' arrival times in each receiver are identified, which may help minimize the difficulties in filtering conventional logging data. The optimized processing flow of the combined measurement mode logging image is given in this paper. The proposed combined monopole–dipole measurement mode may improve the accuracy of single-well imaging.展开更多
In many image analysis and processing problems, discriminating the size and shape of each individual object in an aggregate pile projected in an image is an important practice. It is relatively easy to distinguish the...In many image analysis and processing problems, discriminating the size and shape of each individual object in an aggregate pile projected in an image is an important practice. It is relatively easy to distinguish these features among the objects already separated from each other. The problems will be undoubtedly more complex and of greater challenge if the objects are touched or/and overlapped. This letter presents an algorithm that can be used to separate the touches and overlaps existing in the objects within a 2-D image. The approach is first to convert the gray-scale image to its corresponding binary one and then to the 3-D topographic one using the erosion operations. A template (or mask) is engineered to search the topographic surface for the saddle point, from which the segmenting orientation is determined followed by the desired separating operation. The algorithm is tested on a real image and the running result is adequately satisfying and encouraging.展开更多
A novel single-channel blind separation algorithm for permuted motion blurred images is proposed by using blind restoration in this paper. Both the motion direction and the length of the point spread function (PSF) ...A novel single-channel blind separation algorithm for permuted motion blurred images is proposed by using blind restoration in this paper. Both the motion direction and the length of the point spread function (PSF) are estimated by Radon transformation and extrema a detection. Using the estimated blur parameters, the permuted image is restored by performing the L-R blind restoration method. The permutation mixing matrices can be accurately estimated by classifying the ringing effect in the restored image, thereby the source images can be separated. Simulation results show a better separation efficiency for the permuted motion blurred image with various permutation operations. The proposed algorithm indicates a better performance on the robustness against Gaussian noise and lossy JPEG compression.展开更多
The conventional fast converted-wave imaging method directly uses backward Pand converted S-wavefield to produce joint images. However, this image is accompanied by strong background noises, because the wavefi elds in...The conventional fast converted-wave imaging method directly uses backward Pand converted S-wavefield to produce joint images. However, this image is accompanied by strong background noises, because the wavefi elds in all propagation directions contribute to it. Given this issue, we improve the conventional imaging method in the two aspects. First, the amplitude-preserved P-and S-wavef ield are obtained by using an improved space-domain wavef ield separation scheme to decouple the original elastic wavef ield. Second, a convertedwave imaging condition is constructed based on the directional-wavefield separation and only the wavefields propagating in the same directions used for cross-correlation imaging, resulting in effectively eliminating the imaging artifacts of the wavefields with different directions;Complex-wavefi eld extrapolation is adopted to decompose the decoupled P-and S-wavefield into directional-wavefields during backward propagation, this improves the eff iciency of the directional-wavef ield separation. Experiments on synthetic data show that the improved method generates more accurate converted-wave images than the conventional one. Moreover, the improved method has application potential in micro-seismic and passive-source exploration due to its source-independent characteristic.展开更多
To over come the drawbacks existing in current measurement methods for detecting and controlling colors in printing process, a new medal for color separation and dot recognition is proposed from a view of digital imag...To over come the drawbacks existing in current measurement methods for detecting and controlling colors in printing process, a new medal for color separation and dot recognition is proposed from a view of digital image processing and patter recognition. In this model, firstly data samples are collected from some color patches by the Fuzzy C-Means (FCM) method; then a classifier based on the Cerebellar Model Articulation Controller (CMAC) is constructed which is used to recognize color pattern of each pixel in a microscopic halftone image. The principle of color separation and the algorithm model are introduced and the experiments show the effectiveness of the CMAC-based classifier as opposed to the BP network.展开更多
The cell overlapping and adhesion phenomenon often exists in cell image processing. Separating overlapped cell into single ones is of great important and difficult in cell image quantitative analysis and automatic rec...The cell overlapping and adhesion phenomenon often exists in cell image processing. Separating overlapped cell into single ones is of great important and difficult in cell image quantitative analysis and automatic recognition. In this paper, an algorithm based on concave region extraction and erosion limit has been proposed to judge and separate overlapping cell images. Experimental results show that the proposed algorithm has a good separation effects on analog cell images. Then the method is applying in actual cervical cell image and obtains good separation result.展开更多
The high dimensionalhyperspectral image classification is a challenging task due to the spectral feature vectors.The high correlation between these features and the noises greatly affects the classification performanc...The high dimensionalhyperspectral image classification is a challenging task due to the spectral feature vectors.The high correlation between these features and the noises greatly affects the classification performances.To overcome this,dimensionality reduction techniques are widely used.Traditional image processing applications recently propose numerous deep learning models.However,in hyperspectral image classification,the features of deep learning models are less explored.Thus,for efficient hyperspectral image classification,a depth-wise convolutional neural network is presented in this research work.To handle the dimensionality issue in the classification process,an optimized self-organized map model is employed using a water strider optimization algorithm.The network parameters of the self-organized map are optimized by the water strider optimization which reduces the dimensionality issues and enhances the classification performances.Standard datasets such as Indian Pines and the University of Pavia(UP)are considered for experimental analysis.Existing dimensionality reduction methods like Enhanced Hybrid-Graph Discriminant Learning(EHGDL),local geometric structure Fisher analysis(LGSFA),Discriminant Hyper-Laplacian projection(DHLP),Group-based tensor model(GBTM),and Lower rank tensor approximation(LRTA)methods are compared with proposed optimized SOM model.Results confirm the superior performance of the proposed model of 98.22%accuracy for the Indian pines dataset and 98.21%accuracy for the University of Pavia dataset over the existing maximum likelihood classifier,and Support vector machine(SVM).展开更多
基金funded jointly by the National Natural Science Foundation of China(No.41104069)Shandong Province Higher Educational Science and Technology Program(No.J17KA197)+1 种基金Open Foundation of Shandong Provincial Key Laboratory of Depositional Mineralization&Sedimentary Minerals of Shandong University of Science and Technology(No.DMSM2018018)Chunhui Research Foundation of Shengli College,China University of Petroleum(No.KY2017007)。
文摘Fracture-cave reservoirs in carbonate rocks are characterized by a large difference in fracture and cavity size,and a sharp variation in lithology and velocity,thereby resulting in complex diffraction responses.Some small-scale fractures and caves cause weak diffraction energy and would be obscured by the continuous reflection layer in the imaging section,thereby making them difficult to identify.This paper develops a diffraction wave imaging method in the dip domain,which can improve the resolution of small-scale diffractors in the imaging section.Common imaging gathers(CIGs)in the dip domain are extracted by Gaussian beam migration.In accordance with the geometric differences of the diffraction being quasilinear and the reflection being quasiparabolic in the dip-domain CIGs,we use slope analysis technique to filter waves and use Hanning window function to improve the diffraction wave separation level.The diffraction dip-domain CIGs are stacked horizontally to obtain diffraction imaging results.Wavefield separation analysis and numerical modeling results show that the slope analysis method,together with Hanning window filtering,can better suppress noise to obtain the diffraction dip-domain CIGs,thereby improving the clarity of the diffractors in the diffraction imaging section.
基金supported by National Natural Science Foundation of China(41974166)Natural Science Foundation of Hebei Province(D2019403082,D2021403010)+1 种基金Hebei Province“three-threethree talent project”(A202005009)Funding for the Science and Technology Innovation Team Project of Hebei GEO University(KJCXTD202106)
文摘Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fractures,etc.Diffraction imaging is an important method to identify small-scale geological bodies and it has higher resolution than reflection imaging.In the common-offset domain,reflections are mostly expressed as smooth linear events,whereas diffractions are characterized by hyperbolic events.This paper proposes a diffraction extraction method based on double sparse transforms.The linear events can be sparsely expressed by the high-resolution linear Radon transform,and the curved events can be sparsely expressed by the Curvelet transform.A sparse inversion model is built and the alternating direction method is used to solve the inversion model.Simulation data and field data experimental results proved that the diffractions extraction method based on double sparse transforms can effectively improve the imaging quality of faults and other small-scale geological bodies.
文摘Separation of arteries and veins in the cerebral cortex is of significant importance in the studies of cortical hemodynamics,such as the changes of cerebral blood flow,perfusion or oxygen con-centration in arteries and veins under different pathological and physiological conditions.Yet the cerebral vessel segmentation and vessel-type separation are challenging due to the complexity of cortical vessel characteristics and low spatial signal-to-noise ratio.In this work,we presented an effective full-field method to differentiate arteries and veins in cerebral cortex using dual-modal optical imaging technology including laser speckle imaging(LSI)and optical intrinsic signals(OIS)imaging.The raw contrast images were acquired by LSI and processed with enhanced laser speckle contrast analysis(eLASCA),algorithm.The vascular pattern was extracted and seg-mented using region growing algorithm from the eLASCA-based LSI.Meanwhile,OIS imageswere acquired altermatively with 630 and 870 nm to obtain an oxy hemoglobin concentration mapover cerebral cortex.Then the separation of arteries and veins was accomplished by Otsuthreshold segmentation algorithm based on the OIS information and segmentation of LSI.Finally,the segmentation and separation performances were assessed using area overlap measure(AOM).The segmentation and separation of cerebral vessels in cortical optical imaging have great potential applications in full-field cerebral hemodynamics monitoring and pathological study of cerebral vascular diseases,as well as in clinical intraoperative monitoring.
文摘Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.
基金supported by the National Natural Science Foundation of China(Nos.11574347,11374322,11134011,11734017,and 91630309)PetroChina Innovation Foundation(No.2016D-5007-0304)
文摘In this paper, we theoretically and numerically study a combined monopole–dipole measurement mode to show its capability to overcome the issues encountered in conventional single-well imaging, i.e., the low signal-to-noise ratio of the reflections and azimuth ambiguity. First, the azimuth ambiguity, which exists extensively in conventional single-well imaging, is solved with an improved imaging procedure using combined monopole–dipole logging data in addition to conventional logging data. Furthermore, we demonstrate that the direct waves propagating along the boreholes with strong energy, can be effectively eliminated with the proposed combined monopole–dipole measurement mode. The reflections are therefore predominant in the combined monopole–dipole data even before the signals are filtered; thus, the reflections' arrival times in each receiver are identified, which may help minimize the difficulties in filtering conventional logging data. The optimized processing flow of the combined measurement mode logging image is given in this paper. The proposed combined monopole–dipole measurement mode may improve the accuracy of single-well imaging.
基金Suppprted by the Scientific Research Start-up foundation of Ningbo University (No.2004037)Zhejiang Provincial Foundation for Returned Overseas Students and Scholars (No.2004884).
文摘In many image analysis and processing problems, discriminating the size and shape of each individual object in an aggregate pile projected in an image is an important practice. It is relatively easy to distinguish these features among the objects already separated from each other. The problems will be undoubtedly more complex and of greater challenge if the objects are touched or/and overlapped. This letter presents an algorithm that can be used to separate the touches and overlaps existing in the objects within a 2-D image. The approach is first to convert the gray-scale image to its corresponding binary one and then to the 3-D topographic one using the erosion operations. A template (or mask) is engineered to search the topographic surface for the saddle point, from which the segmenting orientation is determined followed by the desired separating operation. The algorithm is tested on a real image and the running result is adequately satisfying and encouraging.
基金Project supported by the National Natural Science Foundation of China (Grant No.60872114)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Graduate Student Innovation Foundation of Shanghai University (Grant No.SHUCX101086)
文摘A novel single-channel blind separation algorithm for permuted motion blurred images is proposed by using blind restoration in this paper. Both the motion direction and the length of the point spread function (PSF) are estimated by Radon transformation and extrema a detection. Using the estimated blur parameters, the permuted image is restored by performing the L-R blind restoration method. The permutation mixing matrices can be accurately estimated by classifying the ringing effect in the restored image, thereby the source images can be separated. Simulation results show a better separation efficiency for the permuted motion blurred image with various permutation operations. The proposed algorithm indicates a better performance on the robustness against Gaussian noise and lossy JPEG compression.
基金supported by the National Science and Technology Major Project of China(No.2017ZX05018-005)National Natural Science Foundation of China(No.41474110)
文摘The conventional fast converted-wave imaging method directly uses backward Pand converted S-wavefield to produce joint images. However, this image is accompanied by strong background noises, because the wavefi elds in all propagation directions contribute to it. Given this issue, we improve the conventional imaging method in the two aspects. First, the amplitude-preserved P-and S-wavef ield are obtained by using an improved space-domain wavef ield separation scheme to decouple the original elastic wavef ield. Second, a convertedwave imaging condition is constructed based on the directional-wavefield separation and only the wavefields propagating in the same directions used for cross-correlation imaging, resulting in effectively eliminating the imaging artifacts of the wavefields with different directions;Complex-wavefi eld extrapolation is adopted to decompose the decoupled P-and S-wavefield into directional-wavefields during backward propagation, this improves the eff iciency of the directional-wavef ield separation. Experiments on synthetic data show that the improved method generates more accurate converted-wave images than the conventional one. Moreover, the improved method has application potential in micro-seismic and passive-source exploration due to its source-independent characteristic.
文摘To over come the drawbacks existing in current measurement methods for detecting and controlling colors in printing process, a new medal for color separation and dot recognition is proposed from a view of digital image processing and patter recognition. In this model, firstly data samples are collected from some color patches by the Fuzzy C-Means (FCM) method; then a classifier based on the Cerebellar Model Articulation Controller (CMAC) is constructed which is used to recognize color pattern of each pixel in a microscopic halftone image. The principle of color separation and the algorithm model are introduced and the experiments show the effectiveness of the CMAC-based classifier as opposed to the BP network.
文摘The cell overlapping and adhesion phenomenon often exists in cell image processing. Separating overlapped cell into single ones is of great important and difficult in cell image quantitative analysis and automatic recognition. In this paper, an algorithm based on concave region extraction and erosion limit has been proposed to judge and separate overlapping cell images. Experimental results show that the proposed algorithm has a good separation effects on analog cell images. Then the method is applying in actual cervical cell image and obtains good separation result.
文摘The high dimensionalhyperspectral image classification is a challenging task due to the spectral feature vectors.The high correlation between these features and the noises greatly affects the classification performances.To overcome this,dimensionality reduction techniques are widely used.Traditional image processing applications recently propose numerous deep learning models.However,in hyperspectral image classification,the features of deep learning models are less explored.Thus,for efficient hyperspectral image classification,a depth-wise convolutional neural network is presented in this research work.To handle the dimensionality issue in the classification process,an optimized self-organized map model is employed using a water strider optimization algorithm.The network parameters of the self-organized map are optimized by the water strider optimization which reduces the dimensionality issues and enhances the classification performances.Standard datasets such as Indian Pines and the University of Pavia(UP)are considered for experimental analysis.Existing dimensionality reduction methods like Enhanced Hybrid-Graph Discriminant Learning(EHGDL),local geometric structure Fisher analysis(LGSFA),Discriminant Hyper-Laplacian projection(DHLP),Group-based tensor model(GBTM),and Lower rank tensor approximation(LRTA)methods are compared with proposed optimized SOM model.Results confirm the superior performance of the proposed model of 98.22%accuracy for the Indian pines dataset and 98.21%accuracy for the University of Pavia dataset over the existing maximum likelihood classifier,and Support vector machine(SVM).