将适用于自治系统的自适应延时反馈混沌控制方法[9]推广到非自治系统中,研究了Bonhoeffer-van der Pol振子的混沌控制。控制结果表明,与原始延时反馈的Pyragas方法相比,不仅在选择延时反馈时间和反馈增益系数上很方便,而且也具有较强的...将适用于自治系统的自适应延时反馈混沌控制方法[9]推广到非自治系统中,研究了Bonhoeffer-van der Pol振子的混沌控制。控制结果表明,与原始延时反馈的Pyragas方法相比,不仅在选择延时反馈时间和反馈增益系数上很方便,而且也具有较强的控制能力。展开更多
将适用于自治系统的自适应延时反馈混沌控制方法[9]推广到非自治系统中,研究了Bonhoeffer-van der Pol振子的混沌控制。控制结果表明,与原始延时反馈的Pyragas方法相比,不仅在选择延时反馈时间和反馈增益系数上很方便,而且也具有较强的...将适用于自治系统的自适应延时反馈混沌控制方法[9]推广到非自治系统中,研究了Bonhoeffer-van der Pol振子的混沌控制。控制结果表明,与原始延时反馈的Pyragas方法相比,不仅在选择延时反馈时间和反馈增益系数上很方便,而且也具有较强的控制能力。展开更多
In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter...In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter. The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.展开更多
讨论了具有有界随机参数的随机Bonhoeffer-Van der Pol系统的随机混沌现象,并利用噪声对其进行控制.首先运用Chebyshev多项式逼近的方法,将随机Bonhoeffer-Van der Pol系统转化为等价的确定性系统,使原系统的随机混沌控制问题转换为等...讨论了具有有界随机参数的随机Bonhoeffer-Van der Pol系统的随机混沌现象,并利用噪声对其进行控制.首先运用Chebyshev多项式逼近的方法,将随机Bonhoeffer-Van der Pol系统转化为等价的确定性系统,使原系统的随机混沌控制问题转换为等价的确定性系统的确定性混沌控制问题,继而可用Lyapunov指数指标来研究等价确定性系统的确定性混沌现象和控制问题.数值结果表明,随机Bonhoeffer-Van der Pol系统的随机混沌现象与相应的确定性Bonhoeffer-Van der Pol系统极为相似.利用噪声控制法可将混沌控制到周期轨道,但是在随机参数及其强度的影响下也呈现出一些特点.展开更多
利用Lyapunov函数方法,对混沌反控制问题进行了研究.以单模激光Lorenz系统和描述心脏搏动的Bonhoeffer-Van der Pol系统为例,设计了一种控制器,成功地使Bonhoeffer-Van der Pol系统混沌化.给出了控制器的具体设计方案以及单模激光Loren...利用Lyapunov函数方法,对混沌反控制问题进行了研究.以单模激光Lorenz系统和描述心脏搏动的Bonhoeffer-Van der Pol系统为例,设计了一种控制器,成功地使Bonhoeffer-Van der Pol系统混沌化.给出了控制器的具体设计方案以及单模激光Lorenz系统与Bonhoeffer-Van der Pol系统状态之间误差系统的结构.仿真结果表明,在控制器的作用下,Bonhoeffer-Van der Pol系统所有状态变量严格地跟踪了单模激光Lorenz系统的混沌轨迹,对应的相空间中Bonhoeffer-Vander Pol系统的轨迹也由极限环转变为与单模激光Lorenz系统的轨迹完全相同的混沌吸引子,Bonhoeffer-Van der Pol系统严格地跟踪了单模激光Lorenz系统混沌的动态行为.展开更多
基金Project supported by the Major Program of the National Natural Science Foundation of China, China (Grant No 10332030), the National Natural Science Foundation of China (Grant No 10472091), and the Graduate Starting Seed Fund of Northwestern Polytechnical University, China (Grant No Z200655).
文摘In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter. The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.
文摘讨论了具有有界随机参数的随机Bonhoeffer-Van der Pol系统的随机混沌现象,并利用噪声对其进行控制.首先运用Chebyshev多项式逼近的方法,将随机Bonhoeffer-Van der Pol系统转化为等价的确定性系统,使原系统的随机混沌控制问题转换为等价的确定性系统的确定性混沌控制问题,继而可用Lyapunov指数指标来研究等价确定性系统的确定性混沌现象和控制问题.数值结果表明,随机Bonhoeffer-Van der Pol系统的随机混沌现象与相应的确定性Bonhoeffer-Van der Pol系统极为相似.利用噪声控制法可将混沌控制到周期轨道,但是在随机参数及其强度的影响下也呈现出一些特点.
文摘利用Lyapunov函数方法,对混沌反控制问题进行了研究.以单模激光Lorenz系统和描述心脏搏动的Bonhoeffer-Van der Pol系统为例,设计了一种控制器,成功地使Bonhoeffer-Van der Pol系统混沌化.给出了控制器的具体设计方案以及单模激光Lorenz系统与Bonhoeffer-Van der Pol系统状态之间误差系统的结构.仿真结果表明,在控制器的作用下,Bonhoeffer-Van der Pol系统所有状态变量严格地跟踪了单模激光Lorenz系统的混沌轨迹,对应的相空间中Bonhoeffer-Vander Pol系统的轨迹也由极限环转变为与单模激光Lorenz系统的轨迹完全相同的混沌吸引子,Bonhoeffer-Van der Pol系统严格地跟踪了单模激光Lorenz系统混沌的动态行为.