The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use ...The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use this algorithm.However,the traditional recommendation algorithm represented by the collaborative filtering algorithm cannot deal with the data sparsity well.This algorithm only uses the shallow feature design of the interaction between readers and books,so it fails to achieve the high-level abstract learning of the relevant attribute features of readers and books,leading to a decline in recommendation performance.Given the above problems,this study uses deep learning technology to model readers’book borrowing probability.It builds a recommendation system model through themulti-layer neural network and inputs the features extracted from readers and books into the network,and then profoundly integrates the features of readers and books through the multi-layer neural network.The hidden deep interaction between readers and books is explored accordingly.Thus,the quality of book recommendation performance will be significantly improved.In the experiment,the evaluation indexes ofHR@10,MRR,andNDCGof the deep neural network recommendation model constructed in this paper are higher than those of the traditional recommendation algorithm,which verifies the effectiveness of the model in the book recommendation.展开更多
The traditional Apriori applied in books management system causes slow system operation due to frequent scanning of database and excessive quantity of candidate item-sets, so an information recommendation book managem...The traditional Apriori applied in books management system causes slow system operation due to frequent scanning of database and excessive quantity of candidate item-sets, so an information recommendation book management system based on improved Apriori data mining algorithm is designed, in which the C/S (client/server) architecture and B/S (browser/server) architecture are integrated, so as to open the book information to library staff and borrowers. The related information data of the borrowers and books can be extracted from books lending database by the data preprocessing sub-module in the system function module. After the data is cleaned, converted and integrated, the association rule mining sub-module is used to mine the strong association rules with support degree greater than minimum support degree threshold and confidence coefficient greater than minimum confidence coefficient threshold according to the processed data and by means of the improved Apriori data mining algorithm to generate association rule database. The association matching is performed by the personalized recommendation sub-module according to the borrower and his selected books in the association rule database. The book information associated with the books read by borrower is recommended to him to realize personalized recommendation of the book information. The experimental results show that the system can effectively recommend book related information, and its CPU occupation rate is only 6.47% under the condition that 50 clients are running it at the same time. Anyway, it has good performance.展开更多
Book Recommendation: Advances in Water Quality Control Gail Krantzberg, Aysegul Tanik et al. Scientific Research Publishing, 2010 316 pages ISBN: 978-1-935068-08-2 Paperback (US$89.00) E-book (US$89.00) Order online: ...Book Recommendation: Advances in Water Quality Control Gail Krantzberg, Aysegul Tanik et al. Scientific Research Publishing, 2010 316 pages ISBN: 978-1-935068-08-2 Paperback (US$89.00) E-book (US$89.00) Order online: www.scirp.org/book Order by email: bookorder@scirp.展开更多
Book Recommendation: Advanced MIMO Systems Kosai Raoof and Huaibei Zhou Scientific Research Publishing, 2009 234 pages ISBN: 978-1-935068-02-0 Paperback (US$80.00) E-book (US$100.00) Order online: www.scirp.org/book O...Book Recommendation: Advanced MIMO Systems Kosai Raoof and Huaibei Zhou Scientific Research Publishing, 2009 234 pages ISBN: 978-1-935068-02-0 Paperback (US$80.00) E-book (US$100.00) Order online: www.scirp.org/book Order by email: bookorder@scirp.展开更多
Abstract: Taking the basic data and the log data of the various businesses of the automation integrated management system of the library in Jinan University as the research object this paper analyzes the internal rel...Abstract: Taking the basic data and the log data of the various businesses of the automation integrated management system of the library in Jinan University as the research object this paper analyzes the internal relationship between books and between the books and the readers, and designs a personalized book recommendation algorithm, the BookSimValue, on the basis of the user collaborative filteringtechnology. The experimental results show that the recommended book information produced by this algorithm can effectively help the readers to solve the problem of the book information overload, which can bring great convenience to the readers and effectively save the time of the readers' selection of the books, thus effectively improving the utilization of the library resources and the service levels.展开更多
The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table techni...The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table technique and reduction of candidate item sets to enhance the usage efficiency of resources as well as the individualized service of the data library.展开更多
Book 1: (Editor-in-Chief: Shi Yafeng; Published by Elsevier and Science Press Beijing in 2008, 539 pages) Glaciers and Related Environments in China Since the professional institution for glaciology attached to the Ch...Book 1: (Editor-in-Chief: Shi Yafeng; Published by Elsevier and Science Press Beijing in 2008, 539 pages) Glaciers and Related Environments in China Since the professional institution for glaciology attached to the Chinese Academy of Sciences was established in 1958, studies of glaciers in alpine regions, and of Quaternary glaciations throughout展开更多
基金This work was partly supported by the Basic Ability Improvement Project for Young andMiddle-aged Teachers in Guangxi Colleges andUniversities(2021KY1800,2021KY1804).
文摘The traditional recommendation algorithm represented by the collaborative filtering algorithm is the most classical and widely recommended algorithm in the practical industry.Most book recommendation systems also use this algorithm.However,the traditional recommendation algorithm represented by the collaborative filtering algorithm cannot deal with the data sparsity well.This algorithm only uses the shallow feature design of the interaction between readers and books,so it fails to achieve the high-level abstract learning of the relevant attribute features of readers and books,leading to a decline in recommendation performance.Given the above problems,this study uses deep learning technology to model readers’book borrowing probability.It builds a recommendation system model through themulti-layer neural network and inputs the features extracted from readers and books into the network,and then profoundly integrates the features of readers and books through the multi-layer neural network.The hidden deep interaction between readers and books is explored accordingly.Thus,the quality of book recommendation performance will be significantly improved.In the experiment,the evaluation indexes ofHR@10,MRR,andNDCGof the deep neural network recommendation model constructed in this paper are higher than those of the traditional recommendation algorithm,which verifies the effectiveness of the model in the book recommendation.
文摘The traditional Apriori applied in books management system causes slow system operation due to frequent scanning of database and excessive quantity of candidate item-sets, so an information recommendation book management system based on improved Apriori data mining algorithm is designed, in which the C/S (client/server) architecture and B/S (browser/server) architecture are integrated, so as to open the book information to library staff and borrowers. The related information data of the borrowers and books can be extracted from books lending database by the data preprocessing sub-module in the system function module. After the data is cleaned, converted and integrated, the association rule mining sub-module is used to mine the strong association rules with support degree greater than minimum support degree threshold and confidence coefficient greater than minimum confidence coefficient threshold according to the processed data and by means of the improved Apriori data mining algorithm to generate association rule database. The association matching is performed by the personalized recommendation sub-module according to the borrower and his selected books in the association rule database. The book information associated with the books read by borrower is recommended to him to realize personalized recommendation of the book information. The experimental results show that the system can effectively recommend book related information, and its CPU occupation rate is only 6.47% under the condition that 50 clients are running it at the same time. Anyway, it has good performance.
文摘Book Recommendation: Advances in Water Quality Control Gail Krantzberg, Aysegul Tanik et al. Scientific Research Publishing, 2010 316 pages ISBN: 978-1-935068-08-2 Paperback (US$89.00) E-book (US$89.00) Order online: www.scirp.org/book Order by email: bookorder@scirp.
文摘Book Recommendation: Advanced MIMO Systems Kosai Raoof and Huaibei Zhou Scientific Research Publishing, 2009 234 pages ISBN: 978-1-935068-02-0 Paperback (US$80.00) E-book (US$100.00) Order online: www.scirp.org/book Order by email: bookorder@scirp.
文摘Abstract: Taking the basic data and the log data of the various businesses of the automation integrated management system of the library in Jinan University as the research object this paper analyzes the internal relationship between books and between the books and the readers, and designs a personalized book recommendation algorithm, the BookSimValue, on the basis of the user collaborative filteringtechnology. The experimental results show that the recommended book information produced by this algorithm can effectively help the readers to solve the problem of the book information overload, which can bring great convenience to the readers and effectively save the time of the readers' selection of the books, thus effectively improving the utilization of the library resources and the service levels.
文摘The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table technique and reduction of candidate item sets to enhance the usage efficiency of resources as well as the individualized service of the data library.
文摘Book 1: (Editor-in-Chief: Shi Yafeng; Published by Elsevier and Science Press Beijing in 2008, 539 pages) Glaciers and Related Environments in China Since the professional institution for glaciology attached to the Chinese Academy of Sciences was established in 1958, studies of glaciers in alpine regions, and of Quaternary glaciations throughout