Let G be a non-abelian group and let l2(G) be a finite dimensional Hilbert space of all complex valued functions for which the elements of G form the (standard) orthonormal basis. In our paper we prove results concern...Let G be a non-abelian group and let l2(G) be a finite dimensional Hilbert space of all complex valued functions for which the elements of G form the (standard) orthonormal basis. In our paper we prove results concerning G-decorrelated decompositions of functions in l2(G). These G-decorrelated decompositions are obtained using the G-convolution either by the irreducible characters of the group G or by an orthogonal projection onto the matrix entries of the irreducible representations of the group G. Applications of these G-decorrelated decompositions are given to crossover designs in clinical trials, in particular the William’s 6×3?design with 3 treatments. In our example, the underlying group is the symmetric group S3.展开更多
Around 1945, Alfred Tarski proposed several questions concerning the elementary theory of non-abelian free groups. These remained open for 60 years until they were proved by O. Kharlampovich and A. Myasnikov and indep...Around 1945, Alfred Tarski proposed several questions concerning the elementary theory of non-abelian free groups. These remained open for 60 years until they were proved by O. Kharlampovich and A. Myasnikov and independently by Z. Sela. The proofs, by both sets of authors, were monumental and involved the development of several new areas of infinite group theory. In this paper we explain precisely the Tarski problems and what has been actually proved. We then discuss the history of the solution as well as the components of the proof. We then provide the basic strategy for the proof. We finish this paper with a brief discussion of elementary free groups.展开更多
We give a definition and some primary properties of group-valued measure with a second countable complete Boolean algebra domain, and with a subset of a first countable complete Abelian po-group codomain.
文摘Let G be a non-abelian group and let l2(G) be a finite dimensional Hilbert space of all complex valued functions for which the elements of G form the (standard) orthonormal basis. In our paper we prove results concerning G-decorrelated decompositions of functions in l2(G). These G-decorrelated decompositions are obtained using the G-convolution either by the irreducible characters of the group G or by an orthogonal projection onto the matrix entries of the irreducible representations of the group G. Applications of these G-decorrelated decompositions are given to crossover designs in clinical trials, in particular the William’s 6×3?design with 3 treatments. In our example, the underlying group is the symmetric group S3.
文摘Around 1945, Alfred Tarski proposed several questions concerning the elementary theory of non-abelian free groups. These remained open for 60 years until they were proved by O. Kharlampovich and A. Myasnikov and independently by Z. Sela. The proofs, by both sets of authors, were monumental and involved the development of several new areas of infinite group theory. In this paper we explain precisely the Tarski problems and what has been actually proved. We then discuss the history of the solution as well as the components of the proof. We then provide the basic strategy for the proof. We finish this paper with a brief discussion of elementary free groups.
文摘We give a definition and some primary properties of group-valued measure with a second countable complete Boolean algebra domain, and with a subset of a first countable complete Abelian po-group codomain.