随着射电望远镜口径增大、观测频率提高,对其指向精度的要求也越来越高.然而,望远镜服役于野外台站,台址风扰对天线指向精度的影响在高频段观测时已不能忽略.由于风扰的时变性,现有的抗风方法无法保障大口径高指向精度望远镜在高频段的...随着射电望远镜口径增大、观测频率提高,对其指向精度的要求也越来越高.然而,望远镜服役于野外台站,台址风扰对天线指向精度的影响在高频段观测时已不能忽略.由于风扰的时变性,现有的抗风方法无法保障大口径高指向精度望远镜在高频段的有效观测时长.因此,提出了一种基于风障精确布置改善台址风环境的方法.通过数值模拟构建了风障仿真模型,并将仿真结果与风洞实测数据比较,两种孔隙率风障的平均误差分别为3.7%和6.1%,保证了风障模型的可靠性.以新疆奇台射电望远镜(QiTai radio Telescope,QTT)台址为例,基于QTT台址斜坡地形构建了计算域模型,开展单风障不同高度、不同孔隙率的系列风场仿真试验,得到了风障参量与下游挡风效果的关系.基于单风障合理高度和最优孔隙率设置南北风障,仿真结果表明在确定高度下最优孔隙率可以组合,孔隙率0.1-0.1组合的风障挡风效果最优,南方向来风在天线区域可以有效降低75%以上的风速.展开更多
文摘为了充分利用Dome A地区绝佳的视宁度条件,计划将南极望远镜安装在15m高的塔架上并使用轻质膜圆顶.研究了在塔架和膜圆顶作用下风载对望远镜观测环境的影响,利用计算流体力学(Computational Fluid Dynamics,CFD)分析了在10m·s^(-1)稳态风作用下,不同风向角、方位轴转动角以及镜筒转动角时,望远镜周围风速、湍动能的分布情况以及光程差的变化,同时研究了风屏对风速、湍动能的改善作用和带来的温升.结果表明,塔架和圆顶周围的风速与湍动能分布对风向的改变不敏感;迎风状态时望远镜附近的湍流分布与风速分布情况整体优于背风状态;当风速为10m·s^(-1)时,在距离风屏1m远、3m高的位置处风速降为来流风速的1/3至1/4,望远镜附近的平均温升值为0.044 K.
文摘随着射电望远镜口径增大、观测频率提高,对其指向精度的要求也越来越高.然而,望远镜服役于野外台站,台址风扰对天线指向精度的影响在高频段观测时已不能忽略.由于风扰的时变性,现有的抗风方法无法保障大口径高指向精度望远镜在高频段的有效观测时长.因此,提出了一种基于风障精确布置改善台址风环境的方法.通过数值模拟构建了风障仿真模型,并将仿真结果与风洞实测数据比较,两种孔隙率风障的平均误差分别为3.7%和6.1%,保证了风障模型的可靠性.以新疆奇台射电望远镜(QiTai radio Telescope,QTT)台址为例,基于QTT台址斜坡地形构建了计算域模型,开展单风障不同高度、不同孔隙率的系列风场仿真试验,得到了风障参量与下游挡风效果的关系.基于单风障合理高度和最优孔隙率设置南北风障,仿真结果表明在确定高度下最优孔隙率可以组合,孔隙率0.1-0.1组合的风障挡风效果最优,南方向来风在天线区域可以有效降低75%以上的风速.