期刊文献+
共找到33,286篇文章
< 1 2 250 >
每页显示 20 50 100
构建并外部验证XGBoost模型鉴别乳腺非肿块病变良恶性
1
作者 杨文 杨蔚 +5 位作者 周晓平 杨妍 张宁妹 尹清云 张朝林 刘召弟 《磁共振成像》 北大核心 2025年第1期118-126,145,共10页
目的本研究旨在构建一个基于临床和影像学特征的极端梯度提升(extreme gradient boosting,XGBoost)模型,以鉴别乳腺非肿块病变的良恶性。材料与方法收集2018年1月至2024年7月2个机构,2种乳腺X线设备检查的有病理结果的首诊乳腺非肿块病... 目的本研究旨在构建一个基于临床和影像学特征的极端梯度提升(extreme gradient boosting,XGBoost)模型,以鉴别乳腺非肿块病变的良恶性。材料与方法收集2018年1月至2024年7月2个机构,2种乳腺X线设备检查的有病理结果的首诊乳腺非肿块病变480个。患者被分为建模组[n=310,数字乳腺X线摄影(digital mammography,DM)检查]、内部验证组(n=108,DM检查),和外部验证组[n=62,数字乳腺体层合成摄影(digital breast tomosynthesis,DBT)检查]。记录患者术前乳腺X线(DM或DBT),MRI以及临床特征。采用XGBoost算法和多因素逻辑回归分析,分别构建XGBoost模型和逻辑回归(logistic regression,LR)模型。使用受试者工作特征(receiver operating characteristic,ROC)曲线评估模型的诊断效能。结果在建模组中,患者以7∶3随机分为训练集(n=217)和测试集(n=93)。训练集、测试集、训练集的内部验证组及训练集的外部验证组中,恶性非肿块病灶分别为159(73%)、58(62%)、73(68%)和43(69%)。XGBoost模型的诊断效能明显优于LR模型,在独立的训练集、测试集、训练集的内部验证组及训练集的外部验证组中均表现出良好的诊断效能,曲线下面积(area under the curve,AUC)在0.884~0.913之间。XGBoost模型在四个队列中也表现出良好的校准能力和临床净获益。结论XGBoost模型能够准确鉴别乳腺非肿块病变的良恶性,具有推广应用的潜力。 展开更多
关键词 非肿块强化 乳腺癌 极端梯度提升 机器学习 磁共振成像 乳腺X线摄影
下载PDF
Exogenous melatonin enhances heat stress tolerance in sweetpotato by modulating antioxidant defense system,osmotic homeostasis and stomatal traits
2
作者 Sunjeet Kumar Rui Yu +5 位作者 Yang Liu Yi Liu Mohammad Nauman Khan Yonghua Liu Mengzhao Wang Guopeng Zhu 《Horticultural Plant Journal》 2025年第1期431-445,共15页
Heat stress hinders the growth and productivity of sweetpotato plants,predominantly through oxidative damage to cellular membranes.Therefore,the development of efficient approaches for mitigating heat-related impairme... Heat stress hinders the growth and productivity of sweetpotato plants,predominantly through oxidative damage to cellular membranes.Therefore,the development of efficient approaches for mitigating heat-related impairments is essential for the long-term production of sweetpotatoes.Melatonin has been recognised for its capacity to assist plants in dealing with abiotic stress conditions.This research aimed to investigate how different doses of exogenous melatonin influence heat damage in sweetpotato plants.Heat stress drastically affected shoot and root fresh weight by 31.8 and 44.5%,respectively.This reduction resulted in oxidative stress characterised by increased formation of hydrogen peroxide(H_(2)O_(2))by 804.4%,superoxide ion(O_(2)^(·-))by 211.5%and malondialdehyde(MDA)by 234.2%.Heat stress also reduced chlorophyll concentration,photosystemⅡefficiency(F_v/F_m)by 15.3%and gaseous exchange.However,pre-treatment with 100μmol L^(-1)melatonin increased growth and reduced oxidative damage to sweetpotato plants under heat stress.In particular,melatonin decreased H_(2)O_(2),O_(2)^(·-)and MDA by 64.8%,42.7%and 38.2%,respectively.Melatonin also mitigated the decline in chlorophyll levels and improved stomatal traits,gaseous exchange and F_(v)/F_(m)(13%).Results suggested that the favorable outcomes of melatonin treatment can be associated with elevated antioxidant enzyme activity and an increase in non-enzymatic antioxidants and osmo-protectants.Overall,these findings indicate that exogenous melatonin can improve heat stress tolerance in sweetpotatoes.This stu dy will assist re searchers in further investigating how melatonin makes sweetpotatoes more resistant to heat stress. 展开更多
关键词 SWEETPOTATO Heat stress MELATONIN Oxidative damage Antioxidant defense system Stomatal traits
下载PDF
基于新型CD单元的两相交错并联高增益Boost变换器
3
作者 杨向真 刘灿 +3 位作者 杜燕 张涛 陶燕 王锦秀 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期408-418,共11页
为减少基于电容-二极管(CD)升压单元的两相交错并联高增益Boost变换器的CD单元数量,提升变换器电压增益,提出一种最后两级CD单元电容并联充电、串联供电的新型两相交错Boost变换器拓扑结构,进一步发挥CD单元的升压能力。分析新型3CD、4C... 为减少基于电容-二极管(CD)升压单元的两相交错并联高增益Boost变换器的CD单元数量,提升变换器电压增益,提出一种最后两级CD单元电容并联充电、串联供电的新型两相交错Boost变换器拓扑结构,进一步发挥CD单元的升压能力。分析新型3CD、4CD两相交错并联Boost变换器的拓扑演化过程,提出新型NCD两相交错并联Boost变换器的拓扑演化规律。以新型4CD两相交错并联Boost变换器为例,分析变换器工作原理,以及电感、电容寄生电阻对变换器电压增益的影响。最后在StarSim硬件在环实验平台搭建1 kW的新型4CD单元交错并联Boost变换器,验证该文所提拓扑的正确性。 展开更多
关键词 boost变换器 电容 电感 交错并联 高增益 寄生电阻
下载PDF
一种基于分数阶微积分的CCM Boost变换器准在线无源参数的数字孪生辨识方法
4
作者 马铭遥 韩添侠 +2 位作者 陈强 王鼎奕 徐君 《中国电机工程学报》 EI CSCD 北大核心 2024年第6期2340-2349,I0022,共11页
由于具有高性价比、准确性和数字化等优点,数字孪生已成为电力电子变换器故障趋势判断和预知维护的先进技术。针对当前电力电子变换器所建立的数字孪生模型尚未考虑实际电感、电容的分数阶特性的问题,基于分数阶微积分构建电力电子电路... 由于具有高性价比、准确性和数字化等优点,数字孪生已成为电力电子变换器故障趋势判断和预知维护的先进技术。针对当前电力电子变换器所建立的数字孪生模型尚未考虑实际电感、电容的分数阶特性的问题,基于分数阶微积分构建电力电子电路的预估-校正数字孪生模型,应用基于粒子群优化(particle swarm optimization,PSO)算法的孪生参数辨识方法对不同分数阶阶次下的电感值(L)和电容值(C)进行辨识,并计算出等效串联电阻。通过与现有方法对比,该方法不仅提高了实际电感和实际电容的辨识精度,还能辨识出不同阶次下与不同C下的分数阶参数。最后,搭建不同L和C及分数阶阶次的连续导通模式Boost变换器物理样机,并考虑不同工况条件与不同辨识次数等因素来进行实验验证。实验结果验证了所提模型与方法的有效性。 展开更多
关键词 数字孪生 分数阶 boost变换器 参数辨识 粒子群优化
下载PDF
一种应用于两相交错Boost的耦合电感的优化设计
5
作者 刘计龙 代壮志 +2 位作者 李科峰 于龙洋 王来利 《海军工程大学学报》 CAS 北大核心 2024年第3期52-59,共8页
两相交错Boost变换器具有纹波电流小的优势,但其采用的交错并联技术增加了电感数量,进而增加了装置的体积和重量,不利于其功率密度的提升。耦合电感通过将多个磁性元件集成到一个磁芯实现磁路的部分共享,从而减小了磁元件的数量和重量... 两相交错Boost变换器具有纹波电流小的优势,但其采用的交错并联技术增加了电感数量,进而增加了装置的体积和重量,不利于其功率密度的提升。耦合电感通过将多个磁性元件集成到一个磁芯实现磁路的部分共享,从而减小了磁元件的数量和重量。因此,设计了一种反向耦合电感,并将其应用于两相交错Boost变换器,实现了装置功率密度的提升。首先,对反向耦合电感的工作原理和损耗来源进行分析;然后,在此基础上设计了一种改进的“EE”型磁芯,一方面有效提高了磁芯利用率,另一方面降低了电感的体积与重量;最后,通过有限元仿真对所提优化设计方案进行验证,同时搭建了功率等级为2 kW的两相交错Boost变换器实验平台。仿真和实验结果均验证了所提优化设计方案的有效性。 展开更多
关键词 耦合电感 两相交错boost 电感设计 功率密度
下载PDF
基于随机森林和XGBoost算法构建心脏骤停患者自主循环恢复后神经功能预后不良的风险预测模型 被引量:2
6
作者 桑珍珍 崔杰 +2 位作者 闫寒 王维峰 庞秀艳 《中国急救医学》 CAS CSCD 2024年第7期577-585,共9页
目的 利用机器学习算法构建预测心脏骤停(CA)患者自主循环恢复(ROSC)后神经功能预后不良的预测模型,探索结局相关因子。方法 回顾性收集2016年1月至2024年1月沧州市中心医院收治的CA行心肺复苏(CPR)后ROSC的患者481例为研究对象。收集... 目的 利用机器学习算法构建预测心脏骤停(CA)患者自主循环恢复(ROSC)后神经功能预后不良的预测模型,探索结局相关因子。方法 回顾性收集2016年1月至2024年1月沧州市中心医院收治的CA行心肺复苏(CPR)后ROSC的患者481例为研究对象。收集患者临床资料,根据患者转出重症监护病房(ICU)时的格拉斯哥-匹兹堡脑功能表现分级(CPC)评分,将其分为预后良好组(GNO,n=158)和预后不良组(PNO,n=323)。481例患者按7∶3随机分为训练集(n=338)和测试集(n=143),训练集用于构建模型,测试集用评价模型效能。利用极端梯度提升(XGBoost)和随机森林(RF)两种机器学习算法构建患者神经功能预后不良的预测模型,分别得出影响患者神经功能预后的变量,应用SHAP进行XGBoost模型可解释性分析。将XGBoost和RF算法得出的变量取交集,再将交集变量进行多因素Logistic回归分析,得到差异有统计学意义的变量,进而构建决策树模型。在训练集和测试集上利用受试者工作特征(ROC)曲线和曲线下面积(AUC)评估决策树模型的预测性能。结果 通过XGBoost模型得到与神经功能预后不良相关的变量15个,RF模型得到与神经功能预后不良相关的变量14个,两种模型取交集得到11个与神经功能预后不良相关的交集变量[视神经鞘直径(ONSD)变化率、神经元特异性烯醇化酶(NSE)、入ICU第3天ONSD(ONSD day3)、心脏骤停至心肺复苏(CA-CPR)时间、ROSC时间、急性生理学与慢性健康状况评价Ⅱ(APACHEⅡ)评分、血肌酐、白蛋白、住ICU时间、血乳酸及年龄]。将这11个交集变量进行多因素Logistic回归分析,结果显示,PNO组与GNO组ONSD变化率、NSE、ONSD day3、ROSC时间及年龄这5个变量差异有统计学意义(P<0.05)。用这5个重要变量构建决策树模型,得出3个与患者神经功能预后不良最相关的变量(NSE、ROSC时间及ONSD变化率),在训练集上的决策树模型预测CA行CPR后ROSC患者神经功能预后不良的AUC为0.857(95%CI 0.809~0.903,P<0.001),在测试集上的AUC为0.834 (95%CI 0.761~0.906,P<0.001)。结论 基于XGBoost和RF这2种机器学习方法构建的决策树模型能够更准确地评估CA患者ROSC后神经功能的不良预后,且评价指标可能简化为NSE、ROSC时间及ONSD变化率。 展开更多
关键词 心脏骤停 自主循环恢复 神经功能 预测模型 随机森林 极端梯度提升
下载PDF
分数阶Boost变换器的混沌控制研究
7
作者 谢玲玲 谭恩坤 +1 位作者 杨雨晴 刘斌 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第4期764-772,共9页
基于电容电感均为分数阶的事实,对分数阶连续导通模式Boost变换器的非线性动力学特性进行分析,提出了基于优化参数共振微扰法的分数阶Boost变换器混沌控制策略。首先,采用预估-校正算法建立了峰值电流控制分数阶Boost变换器的预估-校正... 基于电容电感均为分数阶的事实,对分数阶连续导通模式Boost变换器的非线性动力学特性进行分析,提出了基于优化参数共振微扰法的分数阶Boost变换器混沌控制策略。首先,采用预估-校正算法建立了峰值电流控制分数阶Boost变换器的预估-校正模型,通过分岔图详细分析了电路参数对变换器非线性动力学特性的影响。然后,采用优化参数共振微扰法对变换器进行混沌控制,推导了系统的稳定判据,计算了扰动信号的最优幅值与相位。最后,在MATLAB/Simulink中进行仿真实验。研究表明,选择合理的扰动信号,能够有效抑制变换器的混沌现象,使变换器由混沌回归稳定状态。与参数共振微扰法相比,优化后的控制策略提高了系统的鲁棒性。仿真结果验证了所提策略的有效性。 展开更多
关键词 分数阶boost变换器 预估-校正算法 混沌 参数共振微扰法
下载PDF
基于预估-校正算法的分数阶Boost变换器倍周期分岔研究
8
作者 谢玲玲 杨雨晴 +1 位作者 姚浚义 秦龙 《电源学报》 CSCD 北大核心 2024年第2期10-18,共9页
基于电感电容本质是分数阶的事实,对分数阶Boost变换器的非线性动力学特性进行了深入研究。采用分数阶微积分的预估-校正算法,建立了Boost变换器的预估-校正模型,在此基础上得到了以参考电流、输入电压以及电容电感阶数为分岔参数的分岔... 基于电感电容本质是分数阶的事实,对分数阶Boost变换器的非线性动力学特性进行了深入研究。采用分数阶微积分的预估-校正算法,建立了Boost变换器的预估-校正模型,在此基础上得到了以参考电流、输入电压以及电容电感阶数为分岔参数的分岔图,研究了变换器的倍周期分岔和混沌行为,同时与整数阶Boost变换器的非线性动力学行为进行了比较。研究结果表明,在一定的工作条件下,随着变换器某些电路参数的变化,分数阶Boost变换器会出现分岔和混沌等非线性现象;在相同电路参数的条件下,整数阶和分数阶变换器的稳定参数域之间存在差异,与整数阶变换器相比,分数阶变换器的参数稳定区域更小,更真实地反映了Boost变换器的非线性动力学特性。 展开更多
关键词 分数阶 boost变换器 混沌 预估-校正算法 倍周期分岔
下载PDF
引入负载扰动观测的Boost变换器定频滑模控制
9
作者 许加柱 王家禹 +3 位作者 刘裕兴 曾林俊 梁志宏 钟朝峰 《电源学报》 CSCD 北大核心 2024年第4期12-19,共8页
针对传统线性控制方法下Boost变换器存在系统动态性能差和对负载扰动鲁棒性不强的问题,从功率平衡的角度提出1种定频滑模电流控制方法。首先,利用负载电流观测值计算维持输出电压稳定所需的输入功率;其次,通过控制电感电流调整变换器输... 针对传统线性控制方法下Boost变换器存在系统动态性能差和对负载扰动鲁棒性不强的问题,从功率平衡的角度提出1种定频滑模电流控制方法。首先,利用负载电流观测值计算维持输出电压稳定所需的输入功率;其次,通过控制电感电流调整变换器输入功率,从而将系统的状态轨迹限制在对负载扰动具有不变性的滑模面上,保证系统大信号稳定并提升其动态性能;最后,基于等效控制原理,通过PWM技术实现等效滑模控制,避免了传统滑模控制中存在的抖振及开关频率不稳定问题。在Simulink中对Boost变换器负载阶跃变换的工况进行仿真,将所提方法与传统线性控制方法对比。结果表明,采用所提方法,系统的动态性能更好,且能保证系统在负载大范围扰动下的大信号稳定。 展开更多
关键词 boost变换器 等效滑模控制 负载扰动 功率平衡 大信号稳定
下载PDF
基于能量模型的临界导通模式Boost变换器软开关方法
10
作者 王议锋 杨绍琪 +2 位作者 马小勇 陶珑 王忠杰 《电工技术学报》 EI CSCD 北大核心 2024年第10期3049-3059,共11页
在变换器高频化发展的趋势中,功率器件的软开关实现对变换效率的影响更加突出。无辅助电路的临界导通工作模式下,Boost变换器主开关管在特定增益下无法实现软开关。为此,该文提出一种能量模型及相应的软开关实现方法。首先,建立死区前... 在变换器高频化发展的趋势中,功率器件的软开关实现对变换效率的影响更加突出。无辅助电路的临界导通工作模式下,Boost变换器主开关管在特定增益下无法实现软开关。为此,该文提出一种能量模型及相应的软开关实现方法。首先,建立死区前后储能元件能量变化的数学模型。然后,结合死区起止时刻的能量平衡方程,研究软开关无法实现的电路机理。在此基础上,考虑开关管输出电容非线性特征,提出软开关实现方法,避免了复杂谐振过程的时域精确建模,提高软开关实现的准确性。最后,搭建500W实验样机进行实验,结果表明,相较于对谐振过程建模的传统时域模型,所提方法将实际开通电压降低47%,使峰值变换效率提升0.4%,进而验证了其有效性。 展开更多
关键词 boost变换器 临界导通模式 能量模型 软开关 开关管输出电容
下载PDF
宽增益高效率级联式四开关Buck-Boost LLC变换器 被引量:2
11
作者 周国华 邱森林 张小兵 《电工技术学报》 EI CSCD 北大核心 2024年第4期1103-1115,共13页
为了解决变频控制的桥臂共用型四开关Buck-BoostLLC级联变换器磁性元件设计和优化困难的问题,提出一种二次侧为特殊全桥整流结构的级联式四开关Buck-Boost LLC变换器。通过控制二次侧开关管的交叠导通时间以拓宽变换器的电压增益。该变... 为了解决变频控制的桥臂共用型四开关Buck-BoostLLC级联变换器磁性元件设计和优化困难的问题,提出一种二次侧为特殊全桥整流结构的级联式四开关Buck-Boost LLC变换器。通过控制二次侧开关管的交叠导通时间以拓宽变换器的电压增益。该变换器可根据不同的输入电压范围工作在交叠模式和整流模式;在不改变变换器参数的条件下将增益显著提高,能够适应更宽范围的输入电压,同时保持了变换器较高的工作效率。在两种工作模式的基础上,采用移相控制使变换器所有开关管实现零电压导通(ZVS),二极管实现零电流关断(ZCS)。结合状态平面轨迹分析法,对定频控制的级联式四开关Buck-Boost LLC变换器进行模态分析,并推导两种工作模式下的输入-输出表达式和开关管的软开关实现条件。最后,通过研制一台70~280 V输入、240 W/28 V输出的实验样机,验证了理论分析的正确性。 展开更多
关键词 宽输入电压范围 四开关Buck-boost LLC变换器 移相控制 软开关
下载PDF
基于PSO-CNN-XGBoost水下柱形装药峰值超压预测 被引量:1
12
作者 刘芳 李士伟 +1 位作者 卢熹 郭策安 《兵工学报》 EI CAS CSCD 北大核心 2024年第5期1602-1612,共11页
为探索水下柱形装药结构、爆距等参数与水下柱形装药峰值超压的关系,将装药样本数据视为二维数据,建立粒子群优化(Particle Swarm Optimization,PSO)算法、一维卷积神经网络(1D Convolutional Neural Network,1DCNN)和极端梯度提升(Extr... 为探索水下柱形装药结构、爆距等参数与水下柱形装药峰值超压的关系,将装药样本数据视为二维数据,建立粒子群优化(Particle Swarm Optimization,PSO)算法、一维卷积神经网络(1D Convolutional Neural Network,1DCNN)和极端梯度提升(Extreme Gradient Boosting,XGBoost)的水下柱形装药峰值超压融合预测算法。采用相关性分析与数据可视化方法,分析装药结构参数、爆距与峰值超压之间的关联关系。设计1DCNN深度网络挖掘不同长径比、爆距等参数与峰值超压之间的纵向时序关系。运用XGBoost算法寻找装药结构参数、爆距与峰值超压之间的横向非线性关系,提升小样本数据的预测精度。使用PSO算法优化1DCNN和XGBoost的超参数,获得最优算法结构。研究结果表明,在包含10种智能算法的对比实验中,PSO-CNN-XGBoost水下柱形装药峰值超压预测算法在精度、稳定性、拟合程度上均高于其他模型。 展开更多
关键词 水下柱形装药 长径比 爆距 峰值超压 粒子群优化算法 一维卷积神经网络 极端梯度提升
下载PDF
基于TrAdaBoost-GBDT模型的排土场边坡稳定状态判别
13
作者 江松 李涛 +3 位作者 李锦源 李研博 张存良 张立杰 《中国安全科学学报》 CAS CSCD 北大核心 2024年第11期89-98,共10页
针对露天矿排土场失稳数据获取困难,样本数据量少等问题,提出基于迁移学习算法的露天矿排土场边坡稳定状态判别模型;结合陕西省F露天矿排土场边坡的实际地质条件和降雨情况,设计降雨条件下排土场不同土石混合比边坡的相似模拟试验方案,... 针对露天矿排土场失稳数据获取困难,样本数据量少等问题,提出基于迁移学习算法的露天矿排土场边坡稳定状态判别模型;结合陕西省F露天矿排土场边坡的实际地质条件和降雨情况,设计降雨条件下排土场不同土石混合比边坡的相似模拟试验方案,并采集和处理试验中边坡模型的含水率、土压力和孔隙水压力数据;考虑到小样本数据集对梯度提升回归树(GBDT)模型分类精度的影响,运用迁移学习思想,利用迁移自适应增强算法(TrAdaBoost)对源域数据集和目标域数据集样本权重进行迭代更新,以GBDT模型作为数据样本训练的弱学习器,最终根据弱学习器的分类结果,通过加权多数表决法生成一种基于迁移学习的TrAdaBoost-GBDT排土场边坡稳定状性判别模型,以提高小样本数据标签类别的判别准确率。结果表明:相对其他算法模型,提出的排土场边坡稳定状态判别模型在稳定状态判别上有更好的表现,准确率、精准率、召回率和曲线下面积值(AUC)分别达到93.3%、87.5%、100%和93.8%,能够作为边坡稳定状态判别的分类器。该模型相对其他算法模型可以提高小样本数据集的边坡稳定状态判别的准确性,弥补机器学习对小样本数据集分类结果精度较低的不足。 展开更多
关键词 排土场边坡 稳定状态判别 迁移自适应增强梯度提升回归树(TrAdaboost-GBDT) 迁移学习 小样本
下载PDF
结合SVM与XGBoost的链式多路径覆盖测试用例生成 被引量:1
14
作者 钱忠胜 俞情媛 +3 位作者 张丁 姚昌森 秦朗悦 成轶伟 《软件学报》 EI CSCD 北大核心 2024年第6期2795-2820,共26页
机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借... 机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借助遗传算法实现多路径测试数据生成.首先,利用一定样本训练若干个用于预测路径节点状态的子模型(SVM和XGBoost),通过子模型的预测精度值筛选最优子模型,并根据路径节点顺序将其依次链接,形成一个链式模型C-SVMXGBoost(chained SVM and XGBoost).在利用遗传算法生成测试用例时,使用训练好的链式模型代替插桩法获取测试数据覆盖路径(预测路径),寻找预测路径与目标路径相似的路径集,对存在相似路径集的预测路径进行插桩验证,获取精确路径,计算适应度值.在交叉变异过程中引入样本集中路径层级深度较大的优秀测试用例进行重用,生成覆盖目标路径的测试数据.最后,保留进化生成中产生的适应度较高的个体,更新链式模型C-SVMXGBoost,进一步提高测试效率.实验表明,C-SVMXGBoost较其他各对比链式模型更适合解决路径预测问题,可提高测试效率.并且通过与已有经典方法相比,所提方法在覆盖率上提高可达15%,平均进化代数也有所降低,在较大规模程序上其降低百分比可达65%. 展开更多
关键词 测试用例 SVM XGboost 链式模型 多路径覆盖
下载PDF
基于WOA-VMD-XGBoost的混凝土坝变形预测 被引量:1
15
作者 常留红 李晨玉 +3 位作者 曾子彬 尹光景 赵芃芃 薛雄 《水利水运工程学报》 CSCD 北大核心 2024年第3期146-157,共12页
建立混凝土坝高精准变形预测模型是掌握坝体结构服役性态的关键,而其变形监测数据具有复杂的非线性和非平稳特征,会影响预测模型的精度及泛化能力。针对上述问题,引入鲸鱼优化算法(WOA)和包络熵理论自适应寻优变分模态分解(VMD)参数,根... 建立混凝土坝高精准变形预测模型是掌握坝体结构服役性态的关键,而其变形监测数据具有复杂的非线性和非平稳特征,会影响预测模型的精度及泛化能力。针对上述问题,引入鲸鱼优化算法(WOA)和包络熵理论自适应寻优变分模态分解(VMD)参数,根据最佳参数组合多尺度分解变形数据,得到多个不同特征尺度的本征模态函数(IMF)。通过重构分量为新分量,将新分量分别输入极端梯度提升(XGBoost)模型中进行预测,叠加各预测结果得到最终预测值。基于山口岩碾压混凝土拱坝变形监测数据,开展支持向量回归机(SVR)、随机森林(RF)、XGBoost、WOA-VMD-XGBoost等4种模型的精度、泛化能力对比研究。结果表明:相比于单一预测模型,组合模型有效挖掘了变形信号多尺度特征,降低了非线性、非平稳性对模型性能的影响,在精度、泛化能力中表现出更高性能。该组合模型为大坝变形监测提供了理论依据和应用参考。 展开更多
关键词 混凝土坝 变形预测 鲸鱼优化算法 包络熵 变分模态分解 极端梯度提升
下载PDF
基于BiLSTM-XGBoost混合模型的储层岩性识别 被引量:1
16
作者 杜睿山 黄玉朋 +2 位作者 孟令东 张轶楠 周长坤 《计算机系统应用》 2024年第6期108-116,共9页
储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidi... 储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidirectional long short-term memory,BiLSTM)和极端梯度提升决策树(extreme gradient boosting decision tree,XGBoost),提出双向记忆极端梯度提升(BiLSTM-XGBoost,BiXGB)模型预测储层岩性.该模型在传统XGBoost基础上融入了BiLSTM,大大增强了模型对测井数据的特征提取能力.BiXGB模型使用BiLSTM对测井数据进行特征提取,将提取到的特征传递给XGBoost分类模型进行训练和预测.将BiXGB模型应用于储层岩性数据集时,模型预测的总体精度达到了91%.为了进一步验证模型的准确性和稳定性,将模型应用于UCI公开的Occupancy序列数据集,结果显示模型的预测总体精度也高达93%.相较于其他机器学习模型,BiXGB模型能准确地对序列数据进行分类,提高了储层岩性的识别精度,满足了油气勘探的实际需要,为储层岩性识别提供了新的方法. 展开更多
关键词 神经网络 机器学习 测井数据 岩性分类 BiLSTM XGboost
下载PDF
一种基于贝叶斯优化和XGBoost的膏体流变参数预测模型
17
作者 赵艳伟 胡正祥 +4 位作者 乔登攀 姚晋龙 李广涛 杨天雨 王俊 《有色金属(矿山部分)》 2024年第5期118-128,共11页
探究膏体充填料浆流变特性,对矿山合理布置充填管路,高效进行充填作业有重要意义。目的:将繁琐且影响因素众多的膏体流变参数测量试验与先进的机器学习回归预测模型相结合,实现膏体流变参数的准确预测。方法:利用不同物料配合比条件下共... 探究膏体充填料浆流变特性,对矿山合理布置充填管路,高效进行充填作业有重要意义。目的:将繁琐且影响因素众多的膏体流变参数测量试验与先进的机器学习回归预测模型相结合,实现膏体流变参数的准确预测。方法:利用不同物料配合比条件下共128组膏体流变特性试验数据作为模型数据集,选择极度梯度提升回归树(XGBoost)模型,结合贝叶斯算法(BO)对模型进行超参数寻优设置,建立了多目标参数回归预测模型。结果:研究结果表明:经贝叶斯算法优化后的BO-XGBoost模型较XGBoost模型性能显著提升,决定系数R^(2)提高6%。所构建BO-XGBoost模型真实值与预测值在屈服应力数据集上相对误差维持在0.02水平;黏度数据集维持在0.1水平。结论:BO-XGBoost模型可实现膏体流变参数的高效准确预测,创新性地使用了多目标回归模型,为矿山充填作业设计提供参考,具有一定实际工程应用意义。 展开更多
关键词 膏体充填 流变特性 机器学习 贝叶斯优化 极度提升回归树
下载PDF
高增益耦合电感组合Boost-Cuk变换器
18
作者 李洪珠 赫坤鹏 《电气工程学报》 CSCD 北大核心 2024年第2期110-118,共9页
为了解决传统变换器电压增益低的问题,将Boost变换器与Cuk变换器进行并联集成,并利用耦合电感倍压技术提高变换器的电压增益。设计而成的高增益耦合电感组合Boost-Cuk变换器保留了Cuk变换器输出电流的连续性,新型结构中使用无源钳位来... 为了解决传统变换器电压增益低的问题,将Boost变换器与Cuk变换器进行并联集成,并利用耦合电感倍压技术提高变换器的电压增益。设计而成的高增益耦合电感组合Boost-Cuk变换器保留了Cuk变换器输出电流的连续性,新型结构中使用无源钳位来吸收漏感能量,对寄生电容与漏感谐振引起的电压尖峰起到约束作用,降低了开关管的电压应力。描述了变换器电感电流连续模式(Continuous current mode,CCM)下的运行特点,并进行了该变换器的参数设计。最后,通过搭建一台100 W的试验样机来求证理论的正确性。 展开更多
关键词 电压增益 电压应力 boost-Cuk变换器 耦合电感
下载PDF
基于CatBoost-NSGA-Ⅲ算法的盾构姿态预测与优化
19
作者 吴贤国 刘俊 +3 位作者 曹源 雷宇 李士范 覃亚伟 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期69-77,共9页
为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影... 为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影响因素作为输入参数,利用CatBoost算法建立输入参数与盾构姿态之间的非线性映射函数关系,采用随机森林(RF)算法评价输入参数的重要性;以盾构姿态绝对值最小化为目标,构建CatBoost-NSGA-Ⅲ多目标优化模型,并通过案例分析验证所提方法的适用性和有效性。结果表明:采用CatBoost算法训练工程实测数据得到的预测模型具有较高的精度,5个盾构姿态目标的R^(2)范围为0.916~0.943;所研发的CatBoost-NSGA-Ⅲ盾构姿态多目标优化方法,可使盾构姿态得到显著优化,整体改进的平均值为53.34%。 展开更多
关键词 类别型特征梯度提升(Catboost) 第三代非支配排序遗传算法(NSGA-Ⅲ) 盾构姿态 多目标优化 重要性排序
下载PDF
顾及地球物理效应的GNSS高程时间序列AdaBoost预测和插值方法
20
作者 鲁铁定 李祯 《测绘学报》 EI CSCD 北大核心 2024年第6期1077-1085,共9页
传统的GNSS高程时间序列预测和插值方法仅考虑时间变量,具有明显的局限性。本文顾及地球物理效应的影响,通过温度、大气压强、极移等数据和GNSS高程时间序列数据构建回归问题,使用自适应提升(AdaBoost)算法建模。为了验证模型的预测和... 传统的GNSS高程时间序列预测和插值方法仅考虑时间变量,具有明显的局限性。本文顾及地球物理效应的影响,通过温度、大气压强、极移等数据和GNSS高程时间序列数据构建回归问题,使用自适应提升(AdaBoost)算法建模。为了验证模型的预测和插值性能,试验选取4个GNSS站的高程时间序列进行分析。建模试验表明,相较于Prophet模型,AdaBoost模型的拟合精度提升了约35%;预测结果表明,在12个月的预测周期内,AdaBoost模型在4个GNSS站的MAE值为4.0~4.5 mm,RMSE值约为5.0~6.0 mm;插值试验表明,相较于三次样条插值方法,AdaBoost插值模型的精度约提升了15%~28%。预测和插值试验表明,顾及地球物理效应的AdaBoost模型可以应用于GNSS高程时间序列预测与插值。 展开更多
关键词 GNSS高程时间序列 地球物理效应 预测 插值 自适应提升算法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部