期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
用AdaBooster算法实现中文文本分类问题
1
作者
火善栋
《现代计算机》
2016年第20期3-6,共4页
文本分类是文本挖掘的一个重要内容,在很多方面都有着广泛的应用。为了实现中文文本分类问题,先采用分词技术和特征词统计相关方法得到每类训练文档的特征向量中心(质心),通过比较测试文档到质心的距离来实现中文文档分类,然后采用AdaBo...
文本分类是文本挖掘的一个重要内容,在很多方面都有着广泛的应用。为了实现中文文本分类问题,先采用分词技术和特征词统计相关方法得到每类训练文档的特征向量中心(质心),通过比较测试文档到质心的距离来实现中文文档分类,然后采用AdaBooster算法通过不断调整每类训练文档的质心构建一个强分类器。实验表明:采用AdaBooster算法进行中文文本分类时,算法简单、分类速度快、正确率高、占用内存小而且可以根据训练文档的不同实时地调整迭代次数。
展开更多
关键词
中文文本分类
ADA
booster算法
中文分词
文档特征向量
下载PDF
职称材料
题名
用AdaBooster算法实现中文文本分类问题
1
作者
火善栋
机构
重庆三峡学院
出处
《现代计算机》
2016年第20期3-6,共4页
文摘
文本分类是文本挖掘的一个重要内容,在很多方面都有着广泛的应用。为了实现中文文本分类问题,先采用分词技术和特征词统计相关方法得到每类训练文档的特征向量中心(质心),通过比较测试文档到质心的距离来实现中文文档分类,然后采用AdaBooster算法通过不断调整每类训练文档的质心构建一个强分类器。实验表明:采用AdaBooster算法进行中文文本分类时,算法简单、分类速度快、正确率高、占用内存小而且可以根据训练文档的不同实时地调整迭代次数。
关键词
中文文本分类
ADA
booster算法
中文分词
文档特征向量
Keywords
Chinese Text Classification
Ada
booster
Algorithm
Chinese Word Segmentation
Document Feature Vector
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
用AdaBooster算法实现中文文本分类问题
火善栋
《现代计算机》
2016
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部