基于欧洲中期天气预报中心(European Centre for Medium-range weather Forecasts,ECMWF)模式的预报数据和北京地区气象站点的观测数据,使用两种机器学习算法(线性回归和梯度提升回归树)对站点的体感温度进行误差订正,并采用均方根误差(...基于欧洲中期天气预报中心(European Centre for Medium-range weather Forecasts,ECMWF)模式的预报数据和北京地区气象站点的观测数据,使用两种机器学习算法(线性回归和梯度提升回归树)对站点的体感温度进行误差订正,并采用均方根误差(Root Mean Square Error,RMSE)对预报效果进行评估,进一步与传统订正方法模式输出统计(Model Output Statistics,MOS)得到的订正结果进行对比。结果表明:线性回归、梯度提升回归树、MOS和ECMWF预报得到的平均RMSE分别为3.12、3.06、3.45、4.06℃,即机器学习算法明显优于MOS和ECMWF模式原始预报。机器学习订正方法不仅在平原地区取得了较好的效果,在高海拔站点的订正效果更加突出,为北京冬奥会复杂山地条件下赛事正常运行提供了一定的技术保障。展开更多
In this work,we study gradient-based regularization methods for neural networks.We mainly focus on two regularization methods:the total variation and the Tikhonov regularization.Adding the regularization term to the t...In this work,we study gradient-based regularization methods for neural networks.We mainly focus on two regularization methods:the total variation and the Tikhonov regularization.Adding the regularization term to the training loss is equivalent to using neural networks to solve some variational problems,mostly in high dimensions in practical applications.We introduce a general framework to analyze the error between neural network solutions and true solutions to variational problems.The error consists of three parts:the approximation errors of neural networks,the quadrature errors of numerical integration,and the optimization error.We also apply the proposed framework to two-layer networks to derive a priori error estimate when the true solution belongs to the so-called Barron space.Moreover,we conduct some numerical experiments to show that neural networks can solve corresponding variational problems sufficiently well.The networks with gradient-based regularization are much more robust in image applications.展开更多
Churn prediction is a common task for machine learning applications in business.In this paper,this task is adapted for solving problem of low efficiency of massive open online courses(only 5%of all the students finish...Churn prediction is a common task for machine learning applications in business.In this paper,this task is adapted for solving problem of low efficiency of massive open online courses(only 5%of all the students finish their course).The approach is presented on course“Methods and algorithms of the graph theory”held on national platform of online education in Russia.This paper includes all the steps to build an intelligent system to predict students who are active during the course,but not likely to finish it.The first part consists of constructing the right sample for prediction,EDA and choosing the most appropriate week of the course to make predictions on.The second part is about choosing the right metric and building models.Also,approach with using ensembles like stacking is proposed to increase the accuracy of predictions.As a result,a general approach to build a churn prediction model for online course is reviewed.This approach can be used for making the process of online education adaptive and intelligent for a separate student.展开更多
文摘基于欧洲中期天气预报中心(European Centre for Medium-range weather Forecasts,ECMWF)模式的预报数据和北京地区气象站点的观测数据,使用两种机器学习算法(线性回归和梯度提升回归树)对站点的体感温度进行误差订正,并采用均方根误差(Root Mean Square Error,RMSE)对预报效果进行评估,进一步与传统订正方法模式输出统计(Model Output Statistics,MOS)得到的订正结果进行对比。结果表明:线性回归、梯度提升回归树、MOS和ECMWF预报得到的平均RMSE分别为3.12、3.06、3.45、4.06℃,即机器学习算法明显优于MOS和ECMWF模式原始预报。机器学习订正方法不仅在平原地区取得了较好的效果,在高海拔站点的订正效果更加突出,为北京冬奥会复杂山地条件下赛事正常运行提供了一定的技术保障。
基金partially supported by the National Science Foundation of China and Hong Kong RGC Joint Research Scheme(NSFC/RGC 11961160718)the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001)+1 种基金supported by the National Science Foundation of China(NSFC-11871264)the Shenzhen Natural Science Fund(RCJC20210609103819018).
文摘In this work,we study gradient-based regularization methods for neural networks.We mainly focus on two regularization methods:the total variation and the Tikhonov regularization.Adding the regularization term to the training loss is equivalent to using neural networks to solve some variational problems,mostly in high dimensions in practical applications.We introduce a general framework to analyze the error between neural network solutions and true solutions to variational problems.The error consists of three parts:the approximation errors of neural networks,the quadrature errors of numerical integration,and the optimization error.We also apply the proposed framework to two-layer networks to derive a priori error estimate when the true solution belongs to the so-called Barron space.Moreover,we conduct some numerical experiments to show that neural networks can solve corresponding variational problems sufficiently well.The networks with gradient-based regularization are much more robust in image applications.
文摘Churn prediction is a common task for machine learning applications in business.In this paper,this task is adapted for solving problem of low efficiency of massive open online courses(only 5%of all the students finish their course).The approach is presented on course“Methods and algorithms of the graph theory”held on national platform of online education in Russia.This paper includes all the steps to build an intelligent system to predict students who are active during the course,but not likely to finish it.The first part consists of constructing the right sample for prediction,EDA and choosing the most appropriate week of the course to make predictions on.The second part is about choosing the right metric and building models.Also,approach with using ensembles like stacking is proposed to increase the accuracy of predictions.As a result,a general approach to build a churn prediction model for online course is reviewed.This approach can be used for making the process of online education adaptive and intelligent for a separate student.