期刊文献+
共找到13,712篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进Boosting算法的车险理赔额组合模型预测
1
作者 邢铭轩 赵锦艳 《科技与创新》 2024年第9期1-6,共6页
针对车险理赔额预测中单一机器学习方法存在的问题,提出一种基于Optuna调参后的XGBoost(eXtreme Gradient Boosting)-LightGBM(Light Gradient Boosting Machine)组合模型预测方法。首先,分别构建XGBoost与LightGBM单个模型,并使用Optun... 针对车险理赔额预测中单一机器学习方法存在的问题,提出一种基于Optuna调参后的XGBoost(eXtreme Gradient Boosting)-LightGBM(Light Gradient Boosting Machine)组合模型预测方法。首先,分别构建XGBoost与LightGBM单个模型,并使用Optuna框架对模型参数进行优化;其次,将2个优化后的模型预测结果进行加权融合;最后,采用法国第三方责任险的车险保单数对融合模型进行验证。结果表明,与单一的XGBoost和LightGBM模型相比,经过参数优化后的组合模型在预测车险理赔额时展现出更低的均方根误差,从而证明其更高的预测精度。 展开更多
关键词 机器学习 boosting算法 组合模型 Optuna算法
下载PDF
基于改进Boosting算法的夜间运动车辆检测 被引量:1
2
作者 朱韶平 《宁夏大学学报(自然科学版)》 CAS 2014年第1期28-32,共5页
针对夜间交通场景中运动车辆目标提取及实时检测困难的问题,引入改进的Boosting模糊分类算法,提出了一种新的基于车头灯的夜间运动车辆检测方法.通过SIFT算法和融合多特征的方法精确提取夜间运动车辆车头灯特征,利用遗传算法优化Boostin... 针对夜间交通场景中运动车辆目标提取及实时检测困难的问题,引入改进的Boosting模糊分类算法,提出了一种新的基于车头灯的夜间运动车辆检测方法.通过SIFT算法和融合多特征的方法精确提取夜间运动车辆车头灯特征,利用遗传算法优化Boosting模糊分类算法,并以加权投票方式对提取的车头灯特征进行分类判别,最后结合车头灯空间、运动信息及灯光颜色信息进行同车车头灯配对分组,实现夜间运动车辆的实时检测.实验表明,该方法在夜间交通环境中具有良好的实时检测效果和较高鲁棒性. 展开更多
关键词 运动车辆检测 SIFT特征 遗传算法 boosting模糊分类算法
下载PDF
基于改进的Boosting算法的高速公路交通事件检测
3
作者 况夯 钟洪 《常熟理工学院学报》 2007年第10期113-116,共4页
提出一种基于Boosting BP神经网络的交通事件检测方法.以上下游的流量和占有率作为特征,BP神经网络作为分类器进行交通事件的自动分类与检测.为了进一步提高神经网络的泛化能力,采用一种调整权值分布,限制权重扩张的改进的Boosting方法... 提出一种基于Boosting BP神经网络的交通事件检测方法.以上下游的流量和占有率作为特征,BP神经网络作为分类器进行交通事件的自动分类与检测.为了进一步提高神经网络的泛化能力,采用一种调整权值分布,限制权重扩张的改进的Boosting方法,分类器以加权投票方式进行分类决策.实验结果表明该交通事件检测算法是有效的. 展开更多
关键词 改进boosting算法 交通事件检测 BP神经网络
下载PDF
麦克纳姆轮农业机器人路径跟踪——基于改进野马算法
4
作者 穆占海 艾尔肯·亥木都拉 郑威强 《农机化研究》 北大核心 2025年第2期1-8,18,共9页
针对麦克纳姆轮农业机器人在智能大棚中的路径跟踪问题,建立了运动学模型和动力学模型,设计了一种新型的双环比例微分-分数阶比例积分导数(Proportional Derivative-Fractional Order Proportional-Integral Derivative,PD-FOPID)控制... 针对麦克纳姆轮农业机器人在智能大棚中的路径跟踪问题,建立了运动学模型和动力学模型,设计了一种新型的双环比例微分-分数阶比例积分导数(Proportional Derivative-Fractional Order Proportional-Integral Derivative,PD-FOPID)控制器对全局路径进行动态跟踪控制。对于控制器参数多且整定困难的问题,首先采用帐篷映射初始化种群策略、精英主义记忆策略、动态余弦权重策略和柯西—高斯变异策略对原始野马算法进行改进,然后利用略改进野马算法(Improved Wild Horse Optimizer,IWHO)对控制器最优增益参数优化。实验结果表明:所开发的算法在探索和开发阶段方面性能优异,且PD-FOPID控制器在整定工作中表现突出。路径跟踪仿真证明,设计的双环PD-FOPID控制器比FOPID控制器更具显著的优势,能够避免动态误差累积,快速响应调整到规划路径,在提高农业大棚机器人路径跟踪控制质量方面具有巨大的潜力。 展开更多
关键词 麦克纳姆轮农业机器人 路径跟踪 运动学模型 动力学模型 新型双环控制器 改进野马算法
下载PDF
一种用于分类的改进Boosting算法 被引量:3
5
作者 刘凯 王正群 《计算机工程与应用》 CSCD 2012年第6期146-150,共5页
提出了一种新的Boosting算法LAdaBoost。LAdaBoost算法利用局部错误率更新样本被选用于训练下一个分类器的概率,当对一个新的样本进行分类时,考虑了该样本与其邻域内的每个训练样本的近似度;另外,提出了有效邻域的概念。根据不同的组合... 提出了一种新的Boosting算法LAdaBoost。LAdaBoost算法利用局部错误率更新样本被选用于训练下一个分类器的概率,当对一个新的样本进行分类时,考虑了该样本与其邻域内的每个训练样本的近似度;另外,提出了有效邻域的概念。根据不同的组合方法,得到了两种LAdaBoost算法,即LAdaBoost-1和LAdaBoost-2。在UCI上部分实验数据集的实验结果表明,LAda-Boost算法比AdaBoost和Bagging算法更有效,且鲁棒性更好。 展开更多
关键词 机器学习 BAGGING算法 boosting算法 噪声
下载PDF
基于改进XGBoost算法的XLPE电缆接头故障自动化诊断与测量研究
6
作者 周强 顾汉富 +1 位作者 柏嵩 张翔 《自动化与仪表》 2024年第7期84-86,95,共4页
该文研究基于改进XGBoost算法的XLPE电缆接头故障自动化诊断方法。以35 kV XLPE电缆接头为例,设计局放模拟实验,测量4种绝缘故障局放信号,生成二维局放图谱。从中提取描述投影形状和正负半周轮廓差异的故障特征,构建一维向量输入XGBoos... 该文研究基于改进XGBoost算法的XLPE电缆接头故障自动化诊断方法。以35 kV XLPE电缆接头为例,设计局放模拟实验,测量4种绝缘故障局放信号,生成二维局放图谱。从中提取描述投影形状和正负半周轮廓差异的故障特征,构建一维向量输入XGBoost模型,实现故障自动化诊断。应用哈里斯鹰算法优化模型参数,提高诊断分类性能。实验结果表明,该方法能有效测量不同故障类型的局放图谱,并以其特征实现高精度的XLPE电缆接头故障自动化诊断,确保了电缆长期稳定运行,更好地保障了电力安全。 展开更多
关键词 改进XGboost算法 XLPE电缆接头 故障自动化诊断 绝缘故障 哈里斯鹰算法
下载PDF
基于Spark大数据平台与改进Adaboost算法的医院预分检系统研究
7
作者 李宗仁 陈辉 +1 位作者 常俊 王能才 《中国医学装备》 2024年第9期102-106,共5页
目的:设计基于Spark大数据平台与改进Adaboost算法的医院预分检系统,用于医院就诊患者诊前分流,加速患者就医流程。方法:基于Spark大数据平台实时采集初次进入医院就诊患者的基础数据,将区块链技术应用于数据采集、存储与传输全过程,通... 目的:设计基于Spark大数据平台与改进Adaboost算法的医院预分检系统,用于医院就诊患者诊前分流,加速患者就医流程。方法:基于Spark大数据平台实时采集初次进入医院就诊患者的基础数据,将区块链技术应用于数据采集、存储与传输全过程,通过改进Adaboost算法对数据进行分析,采用2011—2020年联勤保障部队第九四〇医院10年间门诊患者的就诊数据为数据集,对患者在院内就诊进行快速甄别并引导就诊。分析基于Spark大数据平台与改进Adaboost算法的医院预分检系统应用效果。结果:改进Adaboost算法设置自定义限制权重阈值为0.52时,算法准确率为95.56%,预检分诊准确率较传统Adaboost算法提高4.24%。患者平均候诊时间由采用预分检系统前的0.8 h缩短为0.5 h,患者平均就诊时间由6 min缩短为4.8 min。结论:基于大数据平台与改进Adaboost算法的医院预分检系统能够提前将医院就诊患者进行诊前分流,提高分检效率和分检准确率,缓解医院就诊压力。 展开更多
关键词 预分检 实时采集 Spark大数据平台 改进Adaboost算法
下载PDF
基于K-Means聚类和Boosting算法的配电网线损计算方法
8
作者 马芳 张晨晖 《通信电源技术》 2024年第1期1-3,共3页
传统线损计算方法所需电气参数较多且计算过程烦琐,导致配电网线损计算结果精度较低,因此提出了一种基于K-Means聚类和Boosting算法的配电网线损计算方法。先采用K-Means聚类算法挖掘配电网的线路负荷有功电量、线路负荷无功电量、线路... 传统线损计算方法所需电气参数较多且计算过程烦琐,导致配电网线损计算结果精度较低,因此提出了一种基于K-Means聚类和Boosting算法的配电网线损计算方法。先采用K-Means聚类算法挖掘配电网的线路负荷有功电量、线路负荷无功电量、线路长度及线路负载率等电气特征指标,再将电气特征指标作为Boosting算法线损预测模型的输入数据,经过模型训练完成配电网线损的预测计算。实验结果表明,该设计方法的线损计算值与真实值之间的误差仅为4.27%,具有较高的配电网线损计算精度。 展开更多
关键词 K-MEANS聚类 boosting算法 配电网线损 线损计算
下载PDF
基于改进随机梯度Boosting算法的软测量建模 被引量:5
9
作者 仓文涛 杨慧中 《化工学报》 EI CAS CSCD 北大核心 2017年第3期970-975,共6页
在建立复杂化工过程软测量模型时,使用传统的随机梯度Boosting算法(SGB)建模若收缩参数v选取不当会明显降低算法收敛速度,且极易陷入过拟合,难以取得令人满意的泛化效果。为解决这一问题,提出了一种基于SGB集成学习的软测量建模方法,采... 在建立复杂化工过程软测量模型时,使用传统的随机梯度Boosting算法(SGB)建模若收缩参数v选取不当会明显降低算法收敛速度,且极易陷入过拟合,难以取得令人满意的泛化效果。为解决这一问题,提出了一种基于SGB集成学习的软测量建模方法,采用高斯过程回归作为基学习器,并针对SGB算法固有的不足,依据每一次迭代中弱学习机的反馈,自适应调整收缩参数v,改善了SGB算法的过度拟合,从而提高了集成模型的估计精度与学习效率。将该方法应用于某双酚A装置的软测量建模中,仿真结果表明,相比于传统SGB建模,该方法具有更高的泛化性能和学习效率。 展开更多
关键词 算法 计算机模拟 集成 随机梯度boosting 软测量
下载PDF
基于改进Adaboost算法的分布式光伏发电孤岛检测方法
10
作者 叶烨 叶晗迪 鲍杰利 《机电技术》 2024年第5期14-17,33,共5页
由于分布式光伏发电具有随机性与不确定性,导致电力系统日常运行中极易出现孤岛效应,影响系统安全与稳定,文章提出基于改进Adaboost算法的分布式光伏发电孤岛检测方法。采集并预处理分布式光伏发电系统的PCC点电压信号,提取PCC点电压信... 由于分布式光伏发电具有随机性与不确定性,导致电力系统日常运行中极易出现孤岛效应,影响系统安全与稳定,文章提出基于改进Adaboost算法的分布式光伏发电孤岛检测方法。采集并预处理分布式光伏发电系统的PCC点电压信号,提取PCC点电压信号的小波包能量熵作为信号特征,构建改进的improved-Adaboost分类器,输入信号特征,输出分布式光伏发电孤岛状态的检测结果。实验结果表明:该设计方法不仅可以实现分布式光伏发电孤岛的100%正确检测,且能够满足相关标准对孤岛检测时间的要求。 展开更多
关键词 改进Adaboost算法 分布式光伏发电 孤岛状态 孤岛检测 检测方法
下载PDF
基于改进的Boosting算法的仓库监控区域目标跟踪研究 被引量:2
11
作者 冯曙明 张佳禹 +2 位作者 杨永成 肖爱华 王大淼 《微型电脑应用》 2020年第5期76-79,共4页
目前,智能视频监控系统在仓库管理中得到广泛应用,对监控系统有关的核心技术——目标检测及跟踪算法的研究则是实现智能化监控管理的重要基础性工作。研究了Boosting跟踪算法及其改进策略,结合现有的多种目标跟踪算法,通过对比分析算法... 目前,智能视频监控系统在仓库管理中得到广泛应用,对监控系统有关的核心技术——目标检测及跟踪算法的研究则是实现智能化监控管理的重要基础性工作。研究了Boosting跟踪算法及其改进策略,结合现有的多种目标跟踪算法,通过对比分析算法的用时、跟踪运动目标数、提取前景数、漂移现象存在、是否丢失目标和需创建跟踪器个数这6个方面,选择跟踪效果及综合性能最佳的改进的Boosting算法作为仓库视频运动物体的跟踪算法,为智能化仓库管理实践提供重要参考依据。 展开更多
关键词 仓库管理 智能监控 目标跟踪 boosting算法
下载PDF
基于改进NSGA-Ⅱ算法的梯级水库多目标优化调度 被引量:2
12
作者 黄显峰 王宁 +2 位作者 刘志佳 方国华 钱骏 《水利水电科技进展》 CSCD 北大核心 2024年第4期51-58,共8页
针对在时间步长较小、计算时段数目较多时,传统智能优化算法在求解梯级水库联合优化调度问题上效率低甚至无可行解的问题,提出了一种改进NSGA-Ⅱ算法。该算法基于NSGA-Ⅱ算法框架,引入参考目标值、潜力目标值、偏移度以及变异引导算子... 针对在时间步长较小、计算时段数目较多时,传统智能优化算法在求解梯级水库联合优化调度问题上效率低甚至无可行解的问题,提出了一种改进NSGA-Ⅱ算法。该算法基于NSGA-Ⅱ算法框架,引入参考目标值、潜力目标值、偏移度以及变异引导算子来优化种群进化过程,强化迭代中的种群质量,使获得的解集更加接近真实的Pareto前沿。福建省金溪流域梯级水库多目标优化调度实例验证结果表明,改进NSGA-Ⅱ算法相对其他算法运算效率更高,优化结果更好,具有较好的实用性。 展开更多
关键词 梯级水库 优化调度 多目标优化 改进NSGA-Ⅱ算法
下载PDF
考虑载客状态的改进孤立森林浮动车异常数据检测算法 被引量:2
13
作者 任其亮 徐韬 +1 位作者 刘媛 程龙春 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第1期124-131,共8页
为提高浮动车数据中异常数据检测能力及不同载客状态下的模型检测分析能力,提出基于S-DTA-IIForest(Summation&Difference Third Order Average&Improvement-Isolation Forest)的浮动车数据异常检测算法。构建由相邻两项求和(S... 为提高浮动车数据中异常数据检测能力及不同载客状态下的模型检测分析能力,提出基于S-DTA-IIForest(Summation&Difference Third Order Average&Improvement-Isolation Forest)的浮动车数据异常检测算法。构建由相邻两项求和(S)、三阶求和平均差分(DTA)的二维度空间SDTA特征向量;提出差额累计更新和动态区分辨识的改进孤立森林IIForest算法,通过设置停止阈值参数,避免当出现新样本异常值分数大于停止阈值时,仅更新样本不更新孤立森林模型的问题,设计每个二叉树区分辨识度参数,区分辨识度位于停止区间时停止二叉树生长,提高算法收敛性能,以ROC(Receiver Operating Characteristic)曲线下面积AUC(Area Under ROC Cure)、F1-score为指标对模型精度进行对比分析,并以重庆市中心城区学府大道开展实例验证。结果表明:本文S-DTA-IIForest组合算法AUC、F1-score分别为86.63%、0.89,AUC较传统孤立森林IForest(Isolation Forest)提高32.4%,运行效率提高1.29%,具有收敛速度更快、精度更高的优势,载客条件下模型AUC、F1-score较未载客分别提高7.7%、10.8%,组合算法对载客数据有更高的检测精度,且未载客状态数据异常率较载客状态增加71.4%,未载客数据异常率更高。 展开更多
关键词 智能交通 异常数据检测 改进孤立森林 浮动车数据 S-DTA算法
下载PDF
基于改进蚁群算法的机器人全局路径规划 被引量:3
14
作者 王艳春 郭永峰 +1 位作者 夏颖 王洋洋 《电子科技》 2024年第5期88-94,共7页
针对传统蚁群算法存在初始信息素缺乏、收敛速度慢以及无法有效躲避障碍物等问题,文中提出了一种基于改进蚁群算法的全局路径规划。引入正态分布函数改进传统启发函数,提高了算法效率,缩短了算法收敛所需时间。自适应调整信息素挥发系数... 针对传统蚁群算法存在初始信息素缺乏、收敛速度慢以及无法有效躲避障碍物等问题,文中提出了一种基于改进蚁群算法的全局路径规划。引入正态分布函数改进传统启发函数,提高了算法效率,缩短了算法收敛所需时间。自适应调整信息素挥发系数,限定信息素范围,避免过早收敛。对算法路径平滑处理,缩短路径长度,从而实现机器人的全局路径规划。仿真结果表明,在20×20环境下,文中算法平均迭代次数比传统蚁群算法减少了28代,收敛速度更快。平均拐点减少了33.3%,使路径更为平滑,克服了初始信息素缺乏,加快了收敛速度,减少了拐点数量,能够有效躲避环境中的障碍物,证明了该算法的可行性。 展开更多
关键词 环境建模 改进蚁群算法 全局路径规划算法 正态分布函数 改进启发函数 信息素挥发系数 限定信息素浓度 路径平滑
下载PDF
基于改进KNN算法的新能源发电单元运行状态识别 被引量:2
15
作者 史林军 戴滔 +5 位作者 劳文洁 吴峰 林克曼 李杨 朱玲 黄锡芳 《电力自动化设备》 EI CSCD 北大核心 2024年第5期65-72,共8页
目前识别发电单元运行状态的研究较少,数据来源以数据采集与监控系统为主,采集速度较慢。为此,提出了一种基于发电单元机端电气量数据并融合改进k近邻(KNN)算法的新能源发电单元状态识别方法,直接采集机端电气量数据用于快速判断发电单... 目前识别发电单元运行状态的研究较少,数据来源以数据采集与监控系统为主,采集速度较慢。为此,提出了一种基于发电单元机端电气量数据并融合改进k近邻(KNN)算法的新能源发电单元状态识别方法,直接采集机端电气量数据用于快速判断发电单元状态。提出KNN算法的改进策略,克服了传统KNN算法准确度低、识别速度慢的缺点。利用电力系统分析综合程序获取用于状态识别的发电单元机端电气量数据,利用改进策略对数据进行预处理,并对比传统KNN算法、逐条使用改进策略的KNN算法对新能源发电单元状态识别的耗时与准确度。结果表明所提算法较传统算法的识别准确度和速度明显提升,能满足稳定控制过程中对新能源发电单元的状态感知需求。 展开更多
关键词 状态识别 改进KNN算法 新能源发电单元 特征提取 特征加权
下载PDF
基于改进DBSCAN空间聚类算法的北京市人工智能产业集聚格局研究 被引量:1
16
作者 张平 范文慧 +1 位作者 贾婧 刘义 《地理科学》 CSSCI CSCD 北大核心 2024年第2期238-247,共10页
企业作为产业的重要主体,其发展直接表征着产业的发展,企业的空间格局对产业的发展及资源配置具有重要的引导意义。本文基于北京市工商注册在业的人工智能企业数据,提取企业注册地址并转化为地理位置信息,通过改进有噪声的应用背景下的... 企业作为产业的重要主体,其发展直接表征着产业的发展,企业的空间格局对产业的发展及资源配置具有重要的引导意义。本文基于北京市工商注册在业的人工智能企业数据,提取企业注册地址并转化为地理位置信息,通过改进有噪声的应用背景下的基于密度的空间聚类算法(DBSCAN),分析北京市细粒度层级下人工智能产业集聚在全市域的空间分布格局特征。在DBSCAN算法改进方面,首先调整Minpts参数为企业注册资本总额与企业数量2个维度,企业数量大于5家且注册资本总额大于一定数额,为形成产业集聚区的2个必要条件;其次提取簇内位于边界的企业位置点作为集聚区地理边界点,将边界点连线并绘制形成人工智能产业集聚区。本文重点分析了企业注册资本和地理聚合半径对人工智能产业集聚区形成的影响,同时采用核密度估计法作为参照验证,表明改进DBSCAN方法具有精确刻画产业集聚区地理边界和确定不同规模产业集聚区的优势。通过分析得知,北京市人工智能产业集聚具有明显的中心分布特征,集中在城六区,呈现“两大龙头带动,北京市全域遍地开花”的分布情况,海淀区、朝阳区处于人工智能集聚程度高水平,相较其他区域,人工智能产业发展遥遥领先;西城区、东城区、丰台区、昌平区处于集聚程度较高水平;通州区、大兴区、平谷区、密云区、石景山区、房山区、门头沟区、怀柔区、顺义区处于集聚程度中等水平;延庆区集聚程度较低。通过改进DBSCAN算法精确定位出中关村区域、上地西二旗区域、五道口区域、望京区域、国贸区域、亦庄经开区等人工智能产业集聚区。进一步探究发现,海淀区的人工智能科研人才优势,朝阳区的信息技术领域企业基础,是两区人工智能发展突出的直接原因。延庆区等郊区远离北京市中心城区,产业资源匮乏,同时由于区域功能定位限制等原因,导致人工智能产业集聚水平较低,表明这些区域人工智能产业发展较为缓慢。 展开更多
关键词 人工智能 产业集聚 改进DBSCAN算法 核密度估计 GIS 北京
下载PDF
基于改进引力搜索算法的水轮机调节系统仿真 被引量:1
17
作者 潘虹 杭晨阳 郑源 《排灌机械工程学报》 CSCD 北大核心 2024年第1期8-13,共6页
针对现阶段水电机组存在多种复杂工况、工程计算受限于算法本身的复杂性等问题,提出一种改进的引力搜索算法(改进PSOGSA),以此提高水轮机控制参数的优化性能,弥补传统控制策略难以满足动态需求的不足.首先,结合PSO算法,在GSA的速度更新... 针对现阶段水电机组存在多种复杂工况、工程计算受限于算法本身的复杂性等问题,提出一种改进的引力搜索算法(改进PSOGSA),以此提高水轮机控制参数的优化性能,弥补传统控制策略难以满足动态需求的不足.首先,结合PSO算法,在GSA的速度更新公式中引入学习因子进行改进.其次,应用一种权重系数优化其位置更新公式,提高算法的自适应性.最后,结合相关仿真建模试验,使用所提改进PSOGSA对水轮机调节系统PID参数进行优化调节.仿真结果表明,在5%空载频率扰动下,改进PSOGSA的PID控制器明显优于上述传统算法,所调节的模型系统能在更短时间内趋于稳定,此时的超调量远低于传统算法,表明此改进PSOGSA在后续迭代中具备更高的迭代效率,并且改善了常规算法中易陷入局部最优的问题,从而证明了改进PSOGSA的合理有效性,水轮机调节系统的控制效果在一定程度上得到优化. 展开更多
关键词 水轮机调节系统 改进引力搜索算法 PID参数优化 粒子群算法
下载PDF
Boosting家族AdaBoost系列代表算法 被引量:27
18
作者 涂承胜 刁力力 +1 位作者 鲁明羽 陆玉昌 《计算机科学》 CSCD 北大核心 2003年第3期30-34,145,共6页
Boosting is one of the most representational ensemble prediction methods. It can be divided into two se-ries: Boost-by-majority and Adaboost. This paper briefly introduces the research status of Boosting and one of it... Boosting is one of the most representational ensemble prediction methods. It can be divided into two se-ries: Boost-by-majority and Adaboost. This paper briefly introduces the research status of Boosting and one of its seri-als-AdaBoost,analyzes the typical algorithms of AdaBoost. 展开更多
关键词 boosting Adaboost.R算法 Adaboost.oc算法 学习算法 ADAboost算法
下载PDF
基于改进蚁群算法的外卖配送路径规划研究 被引量:1
19
作者 唐传茵 章明理 +2 位作者 李静红 苑莹 卫美荣 《南京信息工程大学学报》 CAS 北大核心 2024年第2期145-154,共10页
从外卖配送员角度出发提出一种改进蚁群算法(Improved Ant Colony Optimization,IACO),在此基础上进行外卖配送路径规划研究.首先通过蚁群算法(Ant Colony Optimization,ACO)求解得到初始规划路径,然后通过大规模邻域搜索算法(Large Nei... 从外卖配送员角度出发提出一种改进蚁群算法(Improved Ant Colony Optimization,IACO),在此基础上进行外卖配送路径规划研究.首先通过蚁群算法(Ant Colony Optimization,ACO)求解得到初始规划路径,然后通过大规模邻域搜索算法(Large Neighborhood Search,LNS)优化初始规划路径,通过将ACO和LNS算法结合,提高求解质量.为了验证方法的有效性,对外卖配送过程进行仿真,并且选用不同订单数量场景进行对照分析.根据最优配送方案路线图和目标罚函数的最优值可以得出,IACO算法是有效的,且可以提高外卖配送员外卖配送的效率.IACO算法不但能够提升配送的智能化水平,还从外卖配送员的角度提出一种更为人性化的配送方法,支持网络互联外卖平台派送系统的可持续化发展. 展开更多
关键词 改进蚁群算法 大规模邻域搜索算法 外卖配送 配送方案
下载PDF
基于集成改进蚁群算法的作战环推荐方法 被引量:1
20
作者 李杰 谭跃进 《系统工程与电子技术》 EI CSCD 北大核心 2024年第6期2002-2012,共11页
作战环推荐是依靠优化算法从作战网络中为指挥员推荐最优的作战环,以对目标形成高质量打击。未来作战中的作战环推荐面临体系规模大、决策节奏快的特点。对此,提出了一种集成改进的蚁群算法,能够实现高效、高质的作战环推荐优化求解。首... 作战环推荐是依靠优化算法从作战网络中为指挥员推荐最优的作战环,以对目标形成高质量打击。未来作战中的作战环推荐面临体系规模大、决策节奏快的特点。对此,提出了一种集成改进的蚁群算法,能够实现高效、高质的作战环推荐优化求解。首先,将作战环推荐问题转换为一种基于多仓库路径规划的数学模型。然后,针对原始蚁群算法前期收敛速度慢、算法参数对结果影响大和容易陷入局部最优的问题分别提出了3种改进策略:基于边权重信息的信息素初始化、基于差分进化的蚁群算法参数自适应优化和基于遗传算子的全局搜索能力提升,并进行了集成改进。最后,在案例分析中对集成改进蚁群算法进行了分析和对比,验证了所提算法在不需要大幅提高耗时的情况下,优化结果要优于未集成改进的蚁群算法,且相比于原始蚁群算法提升效果显著。 展开更多
关键词 作战环推荐 多仓库路径规划 智能优化 蚁群算法 集成改进
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部