期刊文献+
共找到11,553篇文章
< 1 2 250 >
每页显示 20 50 100
基于深度自回归模型的电网异常流量检测算法 被引量:1
1
作者 李勇 韩俊飞 +2 位作者 李秀芬 王鹏 王蓓 《沈阳工业大学学报》 CAS 北大核心 2024年第1期24-28,共5页
针对电网中行为种类复杂多样且数量众多的问题,提出了一种基于自回归模型的电网异常流量检测算法。该算法利用深度自编码网络自动提取网络流量数据的特征,降低异常流量检测的分析周期,并自动挖掘数据的层次关系。通过支持向量机对提取... 针对电网中行为种类复杂多样且数量众多的问题,提出了一种基于自回归模型的电网异常流量检测算法。该算法利用深度自编码网络自动提取网络流量数据的特征,降低异常流量检测的分析周期,并自动挖掘数据的层次关系。通过支持向量机对提取的特征进行分类,实现对异常流量的检测。仿真实验结果表明,所提算法可以分析不同攻击向量,避免噪声数据的干扰,进而提高电网异常流量检测的精度,对于流量数据处理具有重要意义。 展开更多
关键词 自回归模型 深度学习 异常检测 海量数据 分析周期 支持向量机
下载PDF
基于Stacking融合模型的Web攻击检测方法 被引量:1
2
作者 万巍 石鑫 +2 位作者 魏金侠 李畅 龙春 《信息安全学报》 CSCD 2024年第1期84-94,共11页
随着计算机技术与互联网技术的飞速发展,Web应用在人们的生产与生活中扮演着越来越重要的角色。但是在人们的日常生活与工作中带来了更多便捷的同时,却也带来了严重的安全隐患。在开发Web应用的过程中,大量不规范的新技术应用引入了很... 随着计算机技术与互联网技术的飞速发展,Web应用在人们的生产与生活中扮演着越来越重要的角色。但是在人们的日常生活与工作中带来了更多便捷的同时,却也带来了严重的安全隐患。在开发Web应用的过程中,大量不规范的新技术应用引入了很多的网站漏洞。攻击者可以利用Web应用开发过程中的漏洞发起攻击,当Web应用受到攻击时会造成严重的数据泄露和财产损失等安全问题,因此Web安全问题一直受到学术界和工业界的关注。超文本传输协议(HTTP)是一种在Web应用中广泛使用的应用层协议。随着HTTP协议的大量使用,在HTTP请求数据中包含了大量的实际入侵,针对HTTP请求数据进行Web攻击检测的研究也开始逐渐被研究人员所重视。本文提出了一种基于Stacking融合模型的Web攻击检测方法,针对每一条文本格式的HTTP请求数据,首先进行格式化处理得到既定的格式,结合使用Word2Vec方法和TextCNN模型将其转换成向量化表示形式;然后利用Stacking模型融合方法,将不同的子模型(使用配置不同尺寸过滤器的Text-CNN模型搭配不同的检测算法)进行融合搭建出Web攻击检测模型,与融合之前单独的子模型相比在准确率、召回率、F1值上都有所提升。本文所提出的Web攻击检测模型在公开数据集和真实环境数据上都取得了更加稳定的检测性能。 展开更多
关键词 入侵检测 STACKING 融合模型 WEB攻击
下载PDF
食品理化检测实验室风险定量评价模型的构建 被引量:2
3
作者 单耕 《理化检验(化学分册)》 CAS CSCD 北大核心 2024年第2期227-233,共7页
食品理化检测实验室作为检验检测行业的重要组成部分,为企业产品的质量控制和国家监管政策的落地实施提供技术支撑,为社会大众和利益相关方提供可信的数据结果,在整个国家的食品安全监管体系中扮演着非常重要的角色。如果食品理化检测... 食品理化检测实验室作为检验检测行业的重要组成部分,为企业产品的质量控制和国家监管政策的落地实施提供技术支撑,为社会大众和利益相关方提供可信的数据结果,在整个国家的食品安全监管体系中扮演着非常重要的角色。如果食品理化检测实验室的日常运作中出现未识别的重大风险,或者对已经识别的风险评价不准确,采取的应对措施不及时、不得当,不仅可能给实验室造成重大损失,还可能给客户带来严重负面影响,从而引发客户的投诉甚至追责[1]。 展开更多
关键词 定量评价模型 利益相关方 重大风险 理化检测实验室 风险评价 检验检测 监管政策 日常运作
下载PDF
基于车载视觉的端到端驾驶员疲劳检测模型
4
作者 高珍 陈超 +2 位作者 许靖宁 余荣杰 宗佳琪 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期284-292,共9页
营运驾驶员长时间疲劳驾驶是导致事故发生的重要原因,为此,企业在营运车辆上安装相机采集驾驶员面部视频,基于模型和算法自动识别驾驶员的疲劳状态,通过语音提醒甚至启用远程护航进行疲劳干预,以此提高驾驶安全。现有的疲劳检测研究大... 营运驾驶员长时间疲劳驾驶是导致事故发生的重要原因,为此,企业在营运车辆上安装相机采集驾驶员面部视频,基于模型和算法自动识别驾驶员的疲劳状态,通过语音提醒甚至启用远程护航进行疲劳干预,以此提高驾驶安全。现有的疲劳检测研究大多数都是基于面部关键点检测的算法,该类算法对面部视频的质量要求严格。在真实的营运行车环境中,夜晚光线过差,相机位置安装不理想,驾驶员面部遮挡等均会造成关键点检测失效,从而影响模型的准确性。基于卷积神经网络(CNN)和长短时记忆神经网络(LSTM)设计了一种端到端营运驾驶员疲劳检测模型,该模型以相机采集的驾驶员面部视频作为输入,使用CNN网络提取视频单帧特征,在此基础上将时序单帧特征作为LSTM网络的输入来最终识别驾驶员的疲劳状态,实验表明,模型的接收者操作特征曲线下面积(AUC)为0.9,远优于现有的面部关键点模型。此外,为了提高该模型在实际行车环境中的鲁棒性,基于光线变化及相机变化的模拟操作在训练数据上进行了数据增强,通过模型重训练进一步提高了模型的精度及鲁棒性。实验结果表明,改进前,营运车辆行车环境下模型的AUC相比实验室模型下降37.3%,而改进后AUC仅下降9.7%,模型的鲁棒性得到改善,能够更好地适应复杂的营运车辆自然驾驶环境。 展开更多
关键词 车载视觉 疲劳检测 端到端模型 鲁棒性
下载PDF
基于近红外光谱模型转移的牛奶蛋白检测方法研究
5
作者 刘伯扬 赵三军 +10 位作者 白鹏 马利军 赵凯 李慧 牛世祯 高永亮 杨戬 朱磊 杨颖 戈小军 李晨曦 《食品安全质量检测学报》 CAS 2024年第3期148-154,共7页
目的研究基于近红外光谱模型转移的牛奶蛋白检测方法。方法分别采用实验室与在线检测近红外光谱仪采集生产过程中原料奶样品的近红外光谱,研究斜率截距法(slope/bias,S/B)、分段直接标准化(piecewise direct standardization,PDS)算法、... 目的研究基于近红外光谱模型转移的牛奶蛋白检测方法。方法分别采用实验室与在线检测近红外光谱仪采集生产过程中原料奶样品的近红外光谱,研究斜率截距法(slope/bias,S/B)、分段直接标准化(piecewise direct standardization,PDS)算法、Shenk’s方法在不同仪器测量光谱之间模型转移应用,优化模型参数,提高实验室仪器建立的校正模型应用于在线光谱仪器的预测精度。结果经过Shenk’s算法转移,主从机的光谱平均差异降低为0.0075,光谱校正率达到98.95%。利用模型转移方法与偏最小二乘模型结合,将实验室分析光谱仪建立的模型用于生产在线光谱仪测量光谱预测,显著提高了牛奶中蛋白质含量预测准确度,不同仪器之间模型预测相对均方根误差从5.52%下降到2.03%。结论本研究的方法实现了实验室分析与在线检测仪器测量光谱及定量分析模型转移共享,为近红外在线检测的智能化改进提供了基础。 展开更多
关键词 近红外光谱法 模型转移 牛奶 在线检测
下载PDF
基于SwinT-YOLOX模型的自动扶梯行人安全检测算法
6
作者 侯颖 杨林 +3 位作者 胡鑫 贺顺 宋婉莹 赵谦 《计算机工程》 CAS CSCD 北大核心 2024年第3期277-289,共13页
自动扶梯被广泛应用在公共场合,乘客摔倒事故如果不能被及时发现并处理,会造成严重的人身伤害,因此实现自动扶梯智能化监控管理势在必行。受自动扶梯运行环境复杂、行人多以及局部遮挡情况的影响,传统的人体姿态特征摔倒检测模型效果不... 自动扶梯被广泛应用在公共场合,乘客摔倒事故如果不能被及时发现并处理,会造成严重的人身伤害,因此实现自动扶梯智能化监控管理势在必行。受自动扶梯运行环境复杂、行人多以及局部遮挡情况的影响,传统的人体姿态特征摔倒检测模型效果不佳且检测速度减慢。融合Swin Transformer和YOLOX目标检测算法的优秀策略,提出一种基于SwinT-YOLOX网络模型的自动扶梯行人摔倒检测算法。采用Swin Transformer模型作为骨干网络,颈部网络使用添加注意力机制的YOLOX模型,进一步提升特征图的多样性和表达能力。此外,利用漏斗修正线性单元视觉激活函数构建CBF模块,改进颈部网络和Head网络结构,从而获得更优的特征检测性能。实验结果表明,针对自建扶梯行人摔倒数据库和网络采集实际扶梯行人摔倒事故,与AlphaPose、OpenPose、YOLOv5等算法相比,该算法检测性能明显提高,行人摔倒平均检测精度可以达到95.92%,检测帧率为24.08帧/s,能够快速、精准地检测到乘客摔倒事故发生,监控管理平台立刻采取安全急停措施以保证乘客安全。 展开更多
关键词 自动扶梯 摔倒检测 深度学习 YOLOX模型 Swin Transformer模型 漏斗修正线性单元视觉激活函数
下载PDF
域迁移增强的综合假脸检测模型
7
作者 林新棋 董琳 +3 位作者 叶锋 肖觉斯 黄添强 黄丽清 《福建师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期17-29,共13页
提出一种跨域的综合假脸检测模型。首先,设计一种双域融合模型,该模型利用空间注意力机制实现RGB域和频域特征的融合。其次,在此基础上,结合数据增强技术,提出了一种跨域迁移策略。最后,提出的双域模型的精度,在5个通用数据集上均比单... 提出一种跨域的综合假脸检测模型。首先,设计一种双域融合模型,该模型利用空间注意力机制实现RGB域和频域特征的融合。其次,在此基础上,结合数据增强技术,提出了一种跨域迁移策略。最后,提出的双域模型的精度,在5个通用数据集上均比单域模型有一定的提高,尤其在NT数据集上,该方法的精度比EfficientNet-B0方法提高了3.4%。此外,实验结果表明,与其他迁移学习方法相比,在FaceForensics++和Celeb-df数据集上,该方法在域迁移中具有更好的泛化性能。 展开更多
关键词 假脸检测 泛化能力 双域融合模型 迁移策略
下载PDF
改进DenseNet模型在工件表面粗糙度视觉检测中的应用
8
作者 周友行 易倩 +1 位作者 杨文佳 赵文杰 《机械科学与技术》 CSCD 北大核心 2024年第6期1042-1047,共6页
针对原始DenseNet模型检测工件表面粗糙度时间长、准确率较低的问题,结合卷积层滤波器注意力机制和批归一化层缩放系数提出一种工件表面粗糙度检测的深度学习模型。首先,利用注意力重要性值判定模块内的冗余通道。其次,在Dense Block模... 针对原始DenseNet模型检测工件表面粗糙度时间长、准确率较低的问题,结合卷积层滤波器注意力机制和批归一化层缩放系数提出一种工件表面粗糙度检测的深度学习模型。首先,利用注意力重要性值判定模块内的冗余通道。其次,在Dense Block模块内引入批归一化层缩放系数判别特征通道的重要程度。最后联合卷积层滤波器的注意力重要性值和批归一化层缩放系数裁剪冗余通道,实现模型剪枝。实验结果表明,原始DenseNet模型检测工件表面粗糙度的准确率为91.875%,检测时间为483 s。当剪枝率为20%时,其检测效果最好,检测准确率为96.875%,检测时间为255 s。相比于原始DenseNet模型,改进后的DenseNet模型检测效果更好,在质量检测领域方面具有一定的应用前景。 展开更多
关键词 粗糙度检测 深度学习 DenseNet 模型剪枝
下载PDF
模拟复眼视叶神经网的目标运动方向检测模型
9
作者 徐梦溪 施建强 +1 位作者 郑胜男 韩磊 《智能系统学报》 CSCD 北大核心 2024年第3期546-555,共10页
如何对杂乱背景中物体(目标)的运动方向做出准确可靠的检测与感知,是计算机视觉研究领域中一个重要问题。自然界中,飞虫(如苍蝇、蜻蜓等)高适应性和高可靠性的感知目标运动是一种自然特性,本文基于飞虫−果蝇视叶神经纤维网最新的生理学... 如何对杂乱背景中物体(目标)的运动方向做出准确可靠的检测与感知,是计算机视觉研究领域中一个重要问题。自然界中,飞虫(如苍蝇、蜻蜓等)高适应性和高可靠性的感知目标运动是一种自然特性,本文基于飞虫−果蝇视叶神经纤维网最新的生理学研究成果,提出一种基于果蝇视觉感知目标运动方向的多层级检测模型系统。通过对不同场景下拍摄的视频序列样本进行实验和测试,并与2-Q运动检测器模型、基于ON和OFF信号通道处理运动信息的检测模型等进行了对比,验证了其在杂乱背景下对于目标水平和垂直方向运动检测的有效性和鲁棒性。 展开更多
关键词 视频 目标检测 运动方向检测 昆虫复眼 神经计算 人工神经网络 多层级模型 视叶神经网
下载PDF
混凝土无损检测模型的设计与开发
10
作者 马志才 高伟 +2 位作者 田亮 杜一丛 苏磊 《延安职业技术学院学报》 2024年第4期106-108,共3页
目前常用的混凝土无损检测模型体积庞大、价格昂贵,并且单个模型只支持单一指标的检测,导致检测场地的空间浪费。针对以上问题,设计综合性较强的混凝土无损检测教学模型,实现了基于同一模型即可完成混凝内部缺陷、锚杆埋深、裂缝等多个... 目前常用的混凝土无损检测模型体积庞大、价格昂贵,并且单个模型只支持单一指标的检测,导致检测场地的空间浪费。针对以上问题,设计综合性较强的混凝土无损检测教学模型,实现了基于同一模型即可完成混凝内部缺陷、锚杆埋深、裂缝等多个试验项目的检测。提升了混凝土无损检测教学效果,也为同类型检测提供借鉴经验。 展开更多
关键词 无损检测 模型 试验 缺陷
下载PDF
复杂环境下输电线路鸟巢目标图像检测模型
11
作者 屠乃威 焦猛 阎馨 《计算机工程》 CAS CSCD 北大核心 2024年第7期216-226,共11页
为了解决复杂环境下电力巡检无人机对输电线路鸟巢识别精度低、错检漏检率高、定位不准等问题,在YOLOv5s模型的基础上,提出一种用于输电线路鸟巢目标检测的改进YOLO-nc-kd模型。设计一种高效的多尺度卷积特征融合模块(MCFFM),实现不同... 为了解决复杂环境下电力巡检无人机对输电线路鸟巢识别精度低、错检漏检率高、定位不准等问题,在YOLOv5s模型的基础上,提出一种用于输电线路鸟巢目标检测的改进YOLO-nc-kd模型。设计一种高效的多尺度卷积特征融合模块(MCFFM),实现不同尺度下的高效特征提取,使模型能获得更加丰富和多样化的特征表示。引入注意力机制,提升主干网络在相似环境背景下的鸟巢特征提取能力。设计改进的定位损失函数,提高边界框的定位精度和小目标检测能力。使用知识蒸馏技术,进一步提升模型精度。实验结果表明,改进YOLO-nc-kd模型的准确率、召回率以及平均精度均值(m AP)相较于YOLOv5s模型分别提升了7.3、5.6、4.9个百分点,具有较好的输电线路鸟巢目标图像检测效果。 展开更多
关键词 鸟巢检测 YOLOv5s模型 注意力机制 损失函数 知识蒸馏
下载PDF
一种基于目标与背景特征分离模型的高光谱目标检测修正算法
12
作者 吴护林 邓贤明 +6 位作者 张天才 李忠盛 岑奕 汪家辉 熊杰 陈知华 林牧春 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第1期283-291,共9页
高光谱图像立方体数据可以提供成像场景中地物在可见光和近红外波长范围内的空间信息和地物属性诊断的光谱特征信息,在目标检测与识别方面拥有得天独厚的天然优势。然而,基于高光谱图像数据的目标检测也存在一定缺陷,如经典的高光谱目... 高光谱图像立方体数据可以提供成像场景中地物在可见光和近红外波长范围内的空间信息和地物属性诊断的光谱特征信息,在目标检测与识别方面拥有得天独厚的天然优势。然而,基于高光谱图像数据的目标检测也存在一定缺陷,如经典的高光谱目标检测算法仅利用光谱维度信息检测目标,检测模型要么对背景高维特征矩阵构建的准确度不足,要么对背景先验光谱特征的完备性要求较高,导致算法对不同复杂度的检测场景适应性不强。因此,基于计算复杂度较低、参数需求量较少且检测性能较为优异的经典多目标检测算法—多目标约束能量最小化(MCEM),提出了一种基于目标与背景环境特征分离模型的高光谱目标检测修正算法(R-MCEM)。首先,设计了一个与目标形状、尺寸相近的逐像元移动运算窗口,依次计算窗口中的每个像元与窗口内其他像元的光谱距离之和D1,像元与各类目标的光谱距离之和D2。其次,采用获得D1/D2最小值的像元替换窗口内的所有像元值。然后,自左向右、自上而下逐像元移动窗口,重复窗口内每一个像元与目标、背景像元的光谱距离运算,并确定窗口内与背景相似度最高、与目标相似度最低的像元。直到移动运算窗口遍历整个高光谱图像,大幅提升了基于目标与背景环境特征分离的背景高维特征矩阵准确度。分别设计了基于实测高光谱图像数据和模拟图像数据的修正检测算法性能验证试验,并采用三维操作特征曲线(3D ROC)结合目标与背景分离度(SDBT)开展修正算法的检测精度评估。试验结果表明,提出的修正算法有效减少了虚警率,提高了检测精度。基于实测数据的检测精度、目标与背景分离度由MCEM算法的0.937 7、 0.57提升到R-MCEM的0.993 5、 0.67,基于模拟数据的亚像元检测能力由MCEM的20%丰度提升到R-MCEM的15%丰度。 展开更多
关键词 高光谱目标检测 目标与背景特征分离模型 3D ROC SDBT
下载PDF
改进卷积注意力机制的轻量级检测无人机目标模型
13
作者 彭艺 李睿 +1 位作者 杨青青 凃馨月 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期528-535,共8页
利用深度学习中特征提取的优势,提出一种改进算法,结合改进的卷积注意力模块,将YOLOv5模型骨干网络替换为改进的MobileNetv2轻量化网络,形成I-YOLOv5算法,旨在提高检测精确度和小目标、多目标的检测能力,同时保持实时性.为构建数据集,... 利用深度学习中特征提取的优势,提出一种改进算法,结合改进的卷积注意力模块,将YOLOv5模型骨干网络替换为改进的MobileNetv2轻量化网络,形成I-YOLOv5算法,旨在提高检测精确度和小目标、多目标的检测能力,同时保持实时性.为构建数据集,通过网络搜索和自主录制无人机视频的方式,用Label Img工具完成标注.结果表明,I-YOLOv5算法在检测精度上有显著提升,对小目标和多目标的检测效果更优秀,在视频检测方面表现出色,具有较好的实时性能.通过模型结构优化,使检测模型的大小减少为原来的18.6%,检测速度提升120%.I-YOLOv5算法的平均精度均值达到97.8%. 展开更多
关键词 无人机 目标检测 YOLOv5模型 卷积注意力机制 轻量化
下载PDF
基于改进教师-学生模型的色情音频事件检测
14
作者 宫法明 司朋举 李昕 《计算机应用与软件》 北大核心 2024年第2期172-177,共6页
为保障青少年身心健康,国家日益重视色情信息的监管工作。针对传统色情音频检测无法精准定位事件起止时间的问题,提出一种基于半监督学习的改进教师-学生模型。将无标签、弱标签、强标签数据作为训练集输入,通过多层神经网络提取音频的... 为保障青少年身心健康,国家日益重视色情信息的监管工作。针对传统色情音频检测无法精准定位事件起止时间的问题,提出一种基于半监督学习的改进教师-学生模型。将无标签、弱标签、强标签数据作为训练集输入,通过多层神经网络提取音频的帧、段特征,随后迭代优化帧、段所产生的分类损失以及教师-学生模型和段分类模型之间的一致性损失。在真实数据集上,实验结果表明当时间容忍度为5 s时,色情类别召回率达到94.3%,F1得分可达到83.4%。 展开更多
关键词 色情音频检测 半监督学习 教师-学生模型
下载PDF
基于轻量化YOLO v8s-GD的自然环境下百香果快速检测模型
15
作者 罗志聪 何陈涛 +2 位作者 陈登捷 李鹏博 孙奇燕 《农业机械学报》 EI CAS CSCD 北大核心 2024年第8期291-300,共10页
为了提高百香果检测精度,并将深度学习模型部署在移动平台上,实现快速实时推理,本文提出一种基于改进YOLO v8s的轻量化百香果检测模型(YOLO v8s-GD)。使用聚集和分发机制(GD)替换颈部特征融合网络,提高模型对百香果图像特征信息跨层融... 为了提高百香果检测精度,并将深度学习模型部署在移动平台上,实现快速实时推理,本文提出一种基于改进YOLO v8s的轻量化百香果检测模型(YOLO v8s-GD)。使用聚集和分发机制(GD)替换颈部特征融合网络,提高模型对百香果图像特征信息跨层融合能力和模型泛化能力;通过基于层自适应幅度的剪枝(LAMP)修剪模型,损失一定精度换取减小模型体积,减少模型参数量,以实现在嵌入式设备上快速检测;运用知识蒸馏学习策略弥补因剪枝而损失的检测精度,提高模型检测性能。实验结果表明,对于自然环境下采集的百香果数据集,改进后模型参数量和内存占用量相比原YOLO v8s基线模型分别降低63.88%和62.10%,精确率(Precision)和平均精度(AP)相较于原模型分别提高0.9、2.3个百分点,优于其他对比模型。在Jetson Nano和Jetson Tx2嵌入式设备上实时检测帧率(FPS)分别为5.78、19.38 f/s,为原模型的1.93、1.24倍。因此,本文提出的改进后模型能够有效检测复杂环境下百香果目标,为实际场景中百香果自动采摘等移动端检测设备部署和应用提供理论和技术支持。 展开更多
关键词 百香果 YOLO v8s 轻量化 检测模型 聚集和分发机制
下载PDF
一种基于多模型融合的隐蔽隧道和加密恶意流量检测方法
16
作者 顾国民 陈文浩 黄伟达 《信息网络安全》 CSCD 北大核心 2024年第5期694-708,共15页
高级持续威胁APT攻击为了躲避检测,攻击者往往采用加密恶意流量和隐蔽隧道等策略隐匿恶意行为,从而增加检测的难度。目前大多数检测DNS隐蔽隧道的方法基于统计、频率、数据包等特征,这种方法不能很好地进行实时检测,从而导致数据泄露,因... 高级持续威胁APT攻击为了躲避检测,攻击者往往采用加密恶意流量和隐蔽隧道等策略隐匿恶意行为,从而增加检测的难度。目前大多数检测DNS隐蔽隧道的方法基于统计、频率、数据包等特征,这种方法不能很好地进行实时检测,从而导致数据泄露,因此,需要根据单个DNS请求进行检测而不是对流量进行统计后再检测,才能够实现实时且可靠的检测,当系统判定单个DNS请求为隧道流量,便可做出响应,进而避免数据泄露。而现有的加密恶意检测方法存在无法完整提取流量特征信息、提取特征手段单一、特征利用少等问题。因此,文章提出了基于多模型融合的隐蔽隧道加密恶意流量检测方法。对于DNS隐蔽隧道,文章提出了MLP、1D-CNN、RNN模型融合的检测方法并根据提出的数学模型计算融合结果,该方法能够对隐蔽隧道实时监测,进一步提高检测的整体准确率。对于加密恶意流量,文章提出了1D-CNN、LSTM模型的并行融合的检测方法,并行融合模型能够更加全面地提取特征信息,反应流量数据的全貌,进而提高模型的检测精度。 展开更多
关键词 加密恶意流量检测 DNS隐蔽隧道检测 模型融合
下载PDF
基于多度量多模型图像投票的织物表面瑕疵检测方法
17
作者 朱凌云 王晨宇 赵悦莹 《纺织学报》 EI CAS CSCD 北大核心 2024年第6期89-97,共9页
为解决自动化生产线上织物表面瑕疵检测准确率低和计算速度慢的问题,利用织物表面具有周期纹理的特性提出了一种改进的RANSac检测方法,即多度量多模型图像投票。首先将输入图像裁剪为尺寸一致的子图,计算出子图多维度量的输出值矩阵;然... 为解决自动化生产线上织物表面瑕疵检测准确率低和计算速度慢的问题,利用织物表面具有周期纹理的特性提出了一种改进的RANSac检测方法,即多度量多模型图像投票。首先将输入图像裁剪为尺寸一致的子图,计算出子图多维度量的输出值矩阵;然后与改进RANSac计算出的无瑕疵背景的多维度量标准值分别对应作差,采用投票得出每张子图的基础分;再将其在4个记数模型下得到的综合评分排序,根据顺序和偏移量在输出端得到外点所代表的瑕疵子图。实验结果表明:在自采样的织物瑕疵数据集上,选择单度量和单模型的预测精度平均可达到90.9%,平均预测时间达到0.139 s,综合多度量多模型投票的平均预测精度可达到92.7%。该算法不需要大量前期数据进行训练,适用于纯色和条纹状织物的实时表面缺陷检测。 展开更多
关键词 目标检测 周期纹理 织物表面瑕疵检测 零斜率RANSac 多度量多模型图像投票
下载PDF
基于形式化方法的区块链系统漏洞检测模型
18
作者 陈锦富 冯乔伟 +2 位作者 蔡赛华 施登洲 Rexford Nii Ayitey SOSU 《软件学报》 EI CSCD 北大核心 2024年第9期4193-4217,共25页
随着区块链技术在各行各业的广泛应用,区块链系统的架构变得越来越复杂,这也增加了安全问题的数量.目前,在区块链系统中采用了模糊测试、符号执行等传统的漏洞检测方法,但这些技术无法有效检测出未知的漏洞.为了提高区块链系统的安全性... 随着区块链技术在各行各业的广泛应用,区块链系统的架构变得越来越复杂,这也增加了安全问题的数量.目前,在区块链系统中采用了模糊测试、符号执行等传统的漏洞检测方法,但这些技术无法有效检测出未知的漏洞.为了提高区块链系统的安全性,提出基于形式化方法的区块链系统漏洞检测模型VDMBS(vulnerability detection model for blockchain systems),所提模型综合系统迁移状态、安全规约和节点间信任关系等多种安全因素,同时提供基于业务流程执行语言BPEL(business process execution language)的漏洞模型构建方法.最后,用NuSMV在基于区块链的电子投票选举系统上验证所提出的漏洞检测模型的有效性,实验结果表明,与现有的5种形式化测试工具相比,所提出的VDMBS模型能够检测出更多的区块链系统业务逻辑漏洞和智能合约漏洞. 展开更多
关键词 区块链系统 安全因素 漏洞检测模型 形式化验证 BPEL流程
下载PDF
基于文本超图构建的中文仇恨言论检测模型
19
作者 张顺香 王琰慧 +2 位作者 李冠憬 周渝皓 李嘉伟 《安徽理工大学学报(自然科学版)》 CAS 2024年第4期77-88,共12页
目的仇恨言论检测可以判定文本是否具有仇恨倾向,有助于筛除网络上的不当言论,维护网络环境的安全与秩序。为有效解决现有的仇恨言论检测方法依赖单一特征的图结构,难以捕捉文中由于对目标对象的隐性提及以及修辞手法的使用所带来的复... 目的仇恨言论检测可以判定文本是否具有仇恨倾向,有助于筛除网络上的不当言论,维护网络环境的安全与秩序。为有效解决现有的仇恨言论检测方法依赖单一特征的图结构,难以捕捉文中由于对目标对象的隐性提及以及修辞手法的使用所带来的复杂语义,从而导致仇恨言论检测准确率不高的问题。方法提出一种基于文本超图构建的中文仇恨言论检测模型,通过分析文本中的语序和语法信息,及利用大语言模型针对目标对象所获取的语义扩展信息来构建文本超图,从而提升仇恨言论检测的效果。首先,构建提示模板引导大语言模型识别文本中的目标对象,并对其进行知识补充作为文本的语义扩展信息;然后,构建文本超图,以挖掘文本中隐含的语义结构和关联关系,并通过超图注意力机制聚合超图信息得到全局特征;同时,利用roberta-wwm-ext对原始文本进行动态特征提取,得到文本特征;最后利用交叉注意力机制实现文本特征与全局特征的融合,并通过sigmoid计算仇恨倾向检测仇恨言论。结果在COLDataset数据集上进行实验,该方法在实验中取得了较好的效果,可以提高检测的精确率和F1值。结论实验结果表明,该模型能够有效地提升中文仇恨言论的检测效果。 展开更多
关键词 仇恨言论检测 文本超图 大语言模型 roberta-wwm-ext
下载PDF
基于深度生成模型的医院网络异常信息入侵检测算法
20
作者 吴风浪 李晓亮 《吉林大学学报(信息科学版)》 CAS 2024年第5期908-913,共6页
为保障医院信息网络的安全管理,避免医疗信息泄露,提出了基于深度生成模型的医院网络异常信息入侵检测算法。采用二进制小波变换方法,多尺度分解医院网络运行数据,结合自适应软门限去噪系数提取有效数据。运用最优运输理论中的Wasserst... 为保障医院信息网络的安全管理,避免医疗信息泄露,提出了基于深度生成模型的医院网络异常信息入侵检测算法。采用二进制小波变换方法,多尺度分解医院网络运行数据,结合自适应软门限去噪系数提取有效数据。运用最优运输理论中的Wasserstein距离算法与MMD(Maximun Mean Discrepancy)距离算法,在深度生成模型中,对医院网络数据展开降维处理。向异常检测模型中输入降维后网络正常运行数据样本,并提取样本特征。利用深度学习策略中的Adam算法,生成异常信息判别函数,通过待测网络运行数据与正常网络运行数据的特征对比,实现医院网络异常信息入侵检测。实验结果表明,算法能实现对医院网络异常信息入侵的高效检测,精准检测多类型网络入侵行为,为医疗机构网络运行提供安全保障。 展开更多
关键词 二进制小波变换 深度生成模型 Wasserstein距离算法 MMD距离算法 医院网络 异常信息 入侵检测
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部