针对不平衡数据中类重叠区域易造成分类错误的问题,提出一种引入合成因子改进边界分类的Borderline-SMOTE过采样方法(IBSM).首先根据少数类样本近邻分布情况找出处于边界的少数类样本,然后计算边界样本对应的合成因子,并根据其取值更新...针对不平衡数据中类重叠区域易造成分类错误的问题,提出一种引入合成因子改进边界分类的Borderline-SMOTE过采样方法(IBSM).首先根据少数类样本近邻分布情况找出处于边界的少数类样本,然后计算边界样本对应的合成因子,并根据其取值更新该样本需生成的样本数,最后在近邻中根据合成因子挑选距离最近的top-Z少数类样本进行新样本生成.将提出的方法与八种采样方法在KNN和SVM两种分类器、10个KEEL不平衡数据集上进行对比实验,结果表明,提出的方法在大部分数据集上的F1,G-mean,AUC(Area under Curve)均获得最优值,且F1与AUC的Friedman排名最优,证明所提方法和其余采样方法相比,在处理不平衡数据中的边界样本分类问题时有更好的表现,通过合成因子设定一定的约束条件与分配策略,可以为同类研究提供思路.展开更多
文摘针对不平衡数据中类重叠区域易造成分类错误的问题,提出一种引入合成因子改进边界分类的Borderline-SMOTE过采样方法(IBSM).首先根据少数类样本近邻分布情况找出处于边界的少数类样本,然后计算边界样本对应的合成因子,并根据其取值更新该样本需生成的样本数,最后在近邻中根据合成因子挑选距离最近的top-Z少数类样本进行新样本生成.将提出的方法与八种采样方法在KNN和SVM两种分类器、10个KEEL不平衡数据集上进行对比实验,结果表明,提出的方法在大部分数据集上的F1,G-mean,AUC(Area under Curve)均获得最优值,且F1与AUC的Friedman排名最优,证明所提方法和其余采样方法相比,在处理不平衡数据中的边界样本分类问题时有更好的表现,通过合成因子设定一定的约束条件与分配策略,可以为同类研究提供思路.