期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Effects of site preparation methods on soil physical properties and outplanting success of coniferous seedlings in boreal forests
1
作者 Aleksey S.Ilintsev Elena N.Nakvasina Alexander P.Bogdanov 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期70-80,共11页
This study assessed the effect of patch scarification and mounding on the physical properties of the root layer and the success of tree planting in various types of forests.This study was conducted on 12 forest sites ... This study assessed the effect of patch scarification and mounding on the physical properties of the root layer and the success of tree planting in various types of forests.This study was conducted on 12 forest sites in taiga forests of the European part of Russia.A total of 54 plots were set up to assess seedling survival;root collar diameter,height,and heigh increment were measured for 240 seedlings to assess growth.In the rooting layer,240 soil samples were taken to determine physical properties.The study showed that soil treatment methods had no effect on bulk density and total porosity in Cladina sites.However,reduced soil moisture was noted,particularly in mounds,resulting in increased aeration.In Myrtillus sites,there were increased bulk density,reduced soil moisture,and total porosity in the mounds.Mounding treatment in Polytrichum sites resulted in reduced soil moisture and increased aeration porosity.In the Myrtillus and Polytrichum sites,patch scarification had no effects on physical properties.In Polytrichum sites,survival rates,heights,and heigh increments of bareroot Norway spruce seedlings in mounds were higher than in patches;however,the same did not apply to diameter.In Cladina and Myrtillus sites,there was no difference in growth for bareroot and containerised seedlings with different soil treatments.Growing conditions and soil types should be considered when applying different soil treatment methods to ensure high survival rates and successful seedling growth. 展开更多
关键词 boreal forests Mechanical site preparation Patch scarification MOUNDING Soil properties Containerised seedlings Bareroot seedlings
下载PDF
Assessing the impacts of vegetation heterogeneity on energy fluxes and snowmelt in boreal forests 被引量:2
2
作者 Wenge Ni-Meister Huilin Gao 《Journal of Plant Ecology》 SCIE 2011年第1期37-47,共11页
Aims In the mid-and high-latitude regions,three quarters of the land surface is covered by boreal conifer forests,and snow lasts for 6–8 months of the year.Correctly modeling surface energy balance and snowmelt at mi... Aims In the mid-and high-latitude regions,three quarters of the land surface is covered by boreal conifer forests,and snow lasts for 6–8 months of the year.Correctly modeling surface energy balance and snowmelt at mid-and high-latitudes has a significant influence on climate and hydrological processes.However,the heterogeneous and clumped forest structure exerts important control over the radiative energy at the forest floor,which results in large variations of underneath snow cover and snowmelt rate.The goal of this study is to investigate the impact of hierarchically clumped vegetation structure in boreal forest on snowmelt and exchanges of energy and water.Methods We used a simple Clumped Canopy Scheme(CCS)for canopy radiation transfer to characterize the impact of the clumped forest structure on net radiation at the snow surface underneath forests.The CCS was integrated with the Variable Infiltration Capacity macroscale hydrological model(herein referred to as VIC-CCS)to characterize the impact of clumped vegetation structure on surface energy balance and snowmelt during the snow season.A twin simulation,VICCCS and the standard VIC model,was performed to isolate the impact of CCS on the energy and water fluxes and snowmelt rates.The simulation results were compared to in situ measurements at four different forest stands:old aspen forest in the Southern Study Area(SOA),black spruce forests in the Southern and Northern Study Areas(SOBS and NOBS)and fen wetland in the Northern Study Area(NFEN)within the Boreal Ecosystem–Atmosphere Study(BOREAS)region in central Canada during 1994 to1996.Important Findings Simulations showed that the implementation of CCS has reduced incoming long-wave radiation at the underlying snow surface and,thereby,lowered the snowmelt rate.Comparison against ground observations of net radiation and surface flux rates showed a reasonable agreement while demonstrating implementation of CCS can markedly improve model surface energy budget and energy inputs computation for snowmelt.The modeled snowmelt matches reasonably well with observations with root mean square error(RMSE)ranging from 16.51 to 19.81 mm using VIC-CCS versus 29.86 to 32.61 mm for VIC only in the four forest sites.The improvement is the most significant for the deciduous forest(old aspen)site,reducing RMSE by16 mm.This study demonstrates that taking into account the effect of the clumped forest structure in land surface parameterization schemes is critical for snowmelt prediction in the boreal regions. 展开更多
关键词 CLUMPING SNOWMELT VIC boreal forests
原文传递
Does variable stand structure associated with multi-cohort forests support diversity of ground beetle (Coleoptera, Carabidae) communities in the central Nearctic boreal forest? 被引量:1
3
作者 Erica P. Barkley Jay R. Malcolm +1 位作者 Sandy M. Smith M. Isabel Bellocq 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第5期1191-1202,共12页
Multi-cohort management (MCM) that retains a range of stand structures (age and size class) has been proposed to emulate natural disturbance and improve management in the Nearctic boreal forest. Although MCM fores... Multi-cohort management (MCM) that retains a range of stand structures (age and size class) has been proposed to emulate natural disturbance and improve management in the Nearctic boreal forest. Although MCM forests contain both single- and multi-aged stands of mixed tree sizes, little is known about how variable stand structure affects associated fauna and biodiversity. Here, we examine the relationship between ground beetle (Coleoptera, Carabidae) communities and stand characteristics across a range of forest structure (=cohort classes). Given that MCM classes are defined by the distribution of their tree-stem diameters, we ask whether parameters associated with these distributions (Weibull) could explain observed variation in carabid communities, and if so, how this compares to traditional habitat variables such as stand age, foliage complexity or volume of downed woody debris. We sampled carabids using weekly pitfall collections and compared these with structural habitat variables across a range of cohort classes (stand structure and age since disturbance) in 18 sites of upland mixed boreal forests from central Canada. Results showed that richness and diversity of carabid communities were similar among cohort classes. Weibull parameters from the diameter distribution of all stems were the strongest predictors of variation in carabid communities among sites, but vertical foliage complexity, understory thickness, and percentage of deciduous composition were also significant. The abundance of several carabid forest specialists was strongly correlated with tree canopy height, the presence of large trees, and high vertical foliage complexity. Our results demonstrate that variable forest structure, as expected under MCM, may be useful in retaining the natural range of ground beetle species across the central Nearctic boreal forest. 展开更多
关键词 Biodiversity conservation boreal forest CARABIDAE Forest structure Ground beetles Multi-cohortmanagement Tree diameter distribution
下载PDF
Increasing loss of mature boreal forests around protected areas with red-listed forest species
4
作者 Aino‑Maija Määttänen Raimo Virkkala +1 位作者 Niko Leikola Risto K.Heikkinen 《Ecological Processes》 SCIE EI 2022年第1期319-331,共13页
Background:Protected areas(PA)are central to biodiversity,but their efficiency is challenged by human‑induced habitat loss and fragmentation.In the Fennoscandian boreal region,forestry with clearcutting is a threat to... Background:Protected areas(PA)are central to biodiversity,but their efficiency is challenged by human‑induced habitat loss and fragmentation.In the Fennoscandian boreal region,forestry with clearcutting is a threat to biodiversity causing the loss of mature forest elements and deterioration of ecological processes in forest landscapes,ultimately affecting PAs via declined structural connectivity.This paper aims to(1)determine PAs with high,red‑listed species concentrations;(2)estimate the change in forest habitat around these PAs on different spatial scales;and(3)determine if forest management intensity is higher around biologically most valuable PAs.Occurrences of red‑listed forest‑dwelling species in Finland were used to identify PAs harbouring these species and to produce site‑specific importance indices.CORINE landcover data was used as a baseline for the distribution of forests to assess the cover of clear‑cuttings from 2001 to 2019 with the Global Forest Change(GFC)data set in three buffer areas around the PAs with occurrences of red‑listed species.Results:The largest proportion of clear‑cuts occurred in 1 km and 10 km buffers around the PAs in the southern and middle boreal zones,being ca.20%.This indicates that the forest habitat is degrading fast at regional and landscape levels.On the positive side,the change in forest cover was lower around the biologically most important PAs compared to other PAs with red‑listed species.Conclusions:Open and free satellite‑data based assessments of the cover and change of forests provide reliable estimates about the rates at which mature and old‑growth forests are being converted into young managed ones in Finland mainly via clear‑cuts on different scales around PAs.The rate of clear‑cuts was lowest in adjacent buffer areas next to the most species‑rich PAs,which provides opportunities for biodiversity conservation efforts to be targeted to the remaining mature and old‑growth forests found in the vicinity of these areas. 展开更多
关键词 Biodiversity conservation boreal forest Change detection Global Forest Watch Habitat loss Structural connectivity
原文传递
Forecasting the development of boreal paludified forests in response to climate change: a case study using Ontario ecosite classification
5
作者 Benoit Lafleur Nicole J Fenton Yves Bergeron 《Forest Ecosystems》 SCIE CAS CSCD 2015年第1期45-55,共11页
Background:Successional paludification,a dynamic process that leads to the formation of peatlands,is influenced by climatic factors and site features such as surficial deposits and soil texture.In boreal regions,proj... Background:Successional paludification,a dynamic process that leads to the formation of peatlands,is influenced by climatic factors and site features such as surficial deposits and soil texture.In boreal regions,projected climate change and corresponding modifications in natural fire regimes are expected to influence the paludification process and forest development.The objective of this study was to forecast the development of boreal paludified forests in northeastern North America in relation to climate change and modifications in the natural fire regime for the period 2011–2100.Methods:A paludification index was built using static(e.g.surficial deposits and soil texture)and dynamic(e.g.moisture regime and soil organic layer thickness)stand scale factors available from forest maps.The index considered the effects of three temperature increase scenarios(i.e.+1°C,+3°C and+6°C)and progressively decreasing fire cycle(from 300 years for 2011–2041,to 200 years for 2071–2100)on peat accumulation rate and soil organic layer(SOL)thickness at the stand level,and paludification at the landscape level.Results:Our index show that in the context where in the absence of fire the landscape continues to paludify,the negative effect of climate change on peat accumulation resulted in little modification to SOL thickness at the stand level,and no change in the paludification level of the study area between 2011 and 2100.However,including decreasing fire cycle to the index resulted in declines in paludified area.Overall,the index predicts a slight to moderate decrease in the area covered by paludified forests in 2100,with slower rates of paludification.Conclusions:Slower paludification rates imply greater forest productivity and a greater potential for forest harvest,but also a gradual loss of open paludified stands,which could impact the carbon balance in paludified landscapes.Nonetheless,as the thick Sphagnum layer typical of paludified forests may protect soil organic layer from drought and deep burns,a significant proportion of the territory has high potential to remain a carbon sink. 展开更多
关键词 boreal forest Canada Carbon sequestration Paludification Peat forests Forest harvest
下载PDF
Response of soil bacterial community to biochar application in a boreal pine forest
6
作者 Yan Ge Xiao-li Li +6 位作者 Marjo Palviainen Xuan Zhou Jussi Heinonsalo Frank Berninger Jukka Pumpanen Kajar Köster Hui Sun 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第3期749-759,共11页
Boreal forests commonly suff er from nitrogen defi ciency due to low rate of nitrogen mineralization.Biochar may promote soil organic matter decomposition and accelerate nitrogen mineralization.In this study,Illumina ... Boreal forests commonly suff er from nitrogen defi ciency due to low rate of nitrogen mineralization.Biochar may promote soil organic matter decomposition and accelerate nitrogen mineralization.In this study,Illumina NovaSeq sequencing combined with functional annotation of prokaryotic taxa(FAPROTAX)analysis was used to investigate the eff ect of biochar pyrolysis temperatures,the amount of applied biochar,and the period since the biochar application(2-and 3-year)on soil bacterial communities.The results show that biochar pyrolysis temperatures(500℃ and 650℃)and the amount of applied biochar(0.5 kg m^(−2)and 1.0 kg m^(−2))did not change soil properties.Nevertheless,the interaction of biochar pyrolysis temperature and the amount had signifi cant eff ects on bacterial species richness and evenness(P<0.05).The application of biochar produced at 500℃ had a lower abundance of Actinobacteria and Verrucomicrobia,while that produced at 650℃ had a higher abundance of Conexibacter and Phenylobacterium.When biochar produced at 650℃ was applied,applying 0.5 kg m^(−2)had a higher abundance of Cyanobacteria,Conexibacter,and Phenylobacterium than that of 1.0 kg m^(−2)(P<0.05).Functionally,the abundance of the aromatic compound degradation group increased with the extension of application time and increase of pyrolysis temperature.The time since application played an important role in the formation of soil bacterial communities and their functional structure.Long-term studies are necessary to understand the consequence of biochar on bacterial communities in boreal forests. 展开更多
关键词 Biochar application Bacterial communities Community function boreal pine forests
下载PDF
The impact of climate change on forest fire danger rating in China’s boreal forest 被引量:12
7
作者 YANG Guang DI Xue-ying GUO Qing-xi SHU Zhan ZENG Tao YU Hong-zhou WANG Chao 《Journal of Forestry Research》 SCIE CAS CSCD 2011年第2期249-257,共9页
The Great Xing'an Mountains boreal forests were focused on in the northeastern China.The simulated future climate scenarios of IPCC SRES A2a and B2a for both the baseline period of 1961-1990 and the future scenario p... The Great Xing'an Mountains boreal forests were focused on in the northeastern China.The simulated future climate scenarios of IPCC SRES A2a and B2a for both the baseline period of 1961-1990 and the future scenario periods were downscaled by the Delta Method and the Weather Generator to produce daily weather data.After the verification with local weather and fire data,the Canadian Forest Fire Weather Index System was used to assess the forest fire weather situation under climate change in the study region.An increasing trend of fire weather severity was found over the 21st century in the study region under the both future climate change scenarios,compared to the 1961-1990 baseline period.The annual mean/maximum fire weather index was predicted to rise continuously during 2010-2099,and by the end of the 21st century it is predicted to rise by 22%-52% across much of China's boreal forest.The significant increases were predicted in the spring from of April to June and in the summer from July to August.In the summer,the fire weather index was predicted to be higher than the current index by as much as 148% by the end of the 21st century.Under the scenarios of SRES A2a and B2a,both the chance of extremely high fire danger occurrence and the number of days of extremely high fire danger occurrence was predicted to increase in the study region.It is anticipated that the number of extremely high fire danger days would increase from 44 days in 1980s to 53-75 days by the end of the 21st century. 展开更多
关键词 climate change WILDFIRE boreal forest fire weather species West Africa
下载PDF
Effect of species composition on ecosystem services in European boreal forest 被引量:6
8
作者 Timo Pukkala 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第2期261-272,共12页
Forest management in several boreal countries is strongly focused on conifers because they are more productive,the technical quality of their stems is better,and their wood fibers are longer as compared to broadleaves... Forest management in several boreal countries is strongly focused on conifers because they are more productive,the technical quality of their stems is better,and their wood fibers are longer as compared to broadleaves.Favoring conifers in forest management leads to simple forest structures with low resilience and diversity.Such forests are risky in the face of climate change and fluctuating timber prices.Climate change increases the vitality of many forest pests and pathogens such as Heterobasidion spp.and Ips typographus L.which attack mainly spruce.Wind damages are also increasing because of a shorter period of frozen soil to provide a firm anchorage against storms.Wind-thrown trees serve as starting points for bark beetle outbreaks.Increasing the proportion of broadleaved species might alleviate some of these problems.This study predicts the long-term(150 years) consequences of current conifer-oriented forest management in two forest areas,and compared this management with silvicultural strategies that promote mixed forests and broadleaved species.The results show that,in the absence of damages,conifer-oriented forestry would lead to 5–10% higher timber yields and carbon sequestration.The somewhat lower carbon sequestration of broadleaved forests was counteracted by their higher albedo(reflectance).Mixed and broadleafforests were better providers of recreational amenities.Species diversity was much higher in mixed stand and broadleaf-oriented silviculture at stand and forest levels.The analysis indicates that conifer-oriented forest management produces rather small and uncertain economic benefits at a high cost in resilience and diversity. 展开更多
关键词 ALBEDO boreal forest Carbon sequestration DIVERSITY Mixed forest RESILIENCE Scenario analysis
下载PDF
Young and old forest in the boreal:critical stages of ecosystem dynamics and management under global change 被引量:3
9
作者 Timo Kuuluvainen Sylvie Gauthier 《Forest Ecosystems》 SCIE CSCD 2018年第4期361-375,共15页
The circumboreal forest encompasses diverse landscape structures, dynamics and forest age distributions determined by their physical setting, and historical and current disturbance regimes. However, due to intensifyin... The circumboreal forest encompasses diverse landscape structures, dynamics and forest age distributions determined by their physical setting, and historical and current disturbance regimes. However, due to intensifying forest utilisation, and in certain areas due to increasing natural disturbances, boreal forest age-class structures have changed rapidly, so that the proportion of old forest has substantially declined, while that of young post-harvest and post-natural-disturbance forest proportions have increased. In the future, with a warming climate in certain boreal regions, this trend may further be enhanced due to an increase in natural disturbances and large-scale use of forest biomass to replace fossil-based fuels and products.The major drivers of change of forest age class distributions and structures include the use of clearcut shortrotation harvesting, more frequent and severe natural disturbances due to climate warming in certain regions. The decline in old forest area, and increase in managed young forest lacking natural post-disturbance structural legacies,represent a major transformation in the ecological conditions of the boreal forest beyond historical limits of variability.This may introduce a threat to biodiversity, ecosystem resilience and long-term adaptive capacity of the forest ecosystem.To safeguard boreal forest biodiversity and ecosystem functioning, and to maintain the multiple services provided to societies by this forest biome, it is pivotal to maintain an adequate share and the ecological qualities of young postdisturbance stages, along with mature forest stages with old-growth characteristics. This requires management for natural post-disturbance legacy structures, and innovative use of diverse uneven-aged and continuous cover management approaches to maintain critical late-successional forest structures in landscapes. 展开更多
关键词 Adaptive capacity BIODIVERSITY boreal forest Climate change FORESTRY Ecosystem services Forest dynamics Forest management RESILIENCE
下载PDF
Dead standing pine trees in a boreal forest landscape in the Kalevala National Park,northern Fennoscandia: amount,population characteristics and spatial pattern 被引量:2
10
作者 Timo Kuuluvainen Tuomas Aakala Gergely Várkonyi 《Forest Ecosystems》 SCIE CSCD 2017年第3期221-231,共11页
Background: After their death, Scots pine trees can remain standing for decades and sometimes up to 200 years,forming long-lasting and ecologically important structures in boreal forest landscapes. Standing dead pine... Background: After their death, Scots pine trees can remain standing for decades and sometimes up to 200 years,forming long-lasting and ecologically important structures in boreal forest landscapes. Standing dead pines decay very slowly and with time develop into ‘kelo' trees, which are characterized by hard wood with silvery-colored appearance. These kelo trees represent an ecologically important, long lasting and visually striking element of the structure of natural pine-dominated forests in boreal Fennoscandia that is nowadays virtually absent from managed forest landscapes.Methods: We examined and mapped the amount, structural features, site characteristics and spatial distribution of dead standing pine trees over a ten hectare area in an unmanaged boreal forest landscape in the Kalevala National Park in Russian Viena Karelia.Results: The mean basal area of dead standing pine trees in the forested part of the landscape was 1.7 m^2·ha^-1 and the estimated volume 12.7 m^3·ha^-1. From the total number of standing dead pine trees 65% were kelo trees, with a basal area of 1.1 m^2·ha^-1 and volume of 8.0 m^3·ha^-1, the remainder consisting of standing dead pines along the continuum between a recently dead tree and a kelo tree. Overall, standing dead pines were distributed throughout the study area, but there was a tendency towards spatial clustering up to 〈100 m distances. Standing dead pines were most commonly situated on flat ground or in the mid slope in the local topography.In addition, standing dead pines contributed to substrate diversity also by commonly having charred wood and broken tops. Based on the presence of dead pine snags in different stage of transition from a recently dead pine to a kelo with silvery surface, it seems evident that the process of kelo recruitment was continuously in action in the studied landscape.Conclusions: Kelo trees are an omnipresent feature in natural pine-dominated forest landscapes with important contribution to forest structural and substrate diversity. Because of their longevity and extremely slow turnover dynamics and importance for biodiversity, protection of vulnerable kelo tree populations, and ensuring their continuous recruitment, should be of high priority in forest restoration and sustainable management. 展开更多
关键词 boreal forest Coarse Woody debris Dead trees Forest dynamics Kelo Pinus sylvestris SNAG Tree mortality
下载PDF
Fire cycle of the Canada's boreal region and its potential response to global change 被引量:2
11
作者 ZHANG Quan-fa CHEN Wen-jun 《Journal of Forestry Research》 SCIE CAS CSCD 2007年第1期55-61,共7页
Interactions of fire cycle and plant species' reproductive characteristics could determine vegetation distribution pattern of a landscape. In Canada's boreal region, fire cycles before the Little Ice Age (c. 1850s... Interactions of fire cycle and plant species' reproductive characteristics could determine vegetation distribution pattern of a landscape. In Canada's boreal region, fire cycles before the Little Ice Age (c. 1850s) ranged from 30-130 years and 25-234 years afterwards until the settlement period (c. 1930s) when longer fire cycles occurred in response to climatic change and human interference. Analysis indicated that fire cycles were correlated with growing season (April-October) temperature and precipitation departure from the 1961-1990 normal, varying by regions. Assuming that wildfires will respond to future warming similar to the manner during the past century, an assessment using climatic change scenarios CGCMI, CGCM2 and HadCM2 indicates fire cycles would divert to a range of 80-140 years in the west taiga shield, more than 700 years for the east boreal shield and east taiga shield, and 300-400 years for the boreal plains in 2050. 展开更多
关键词 boreal forest Fire cycle Global change Spatial variability
下载PDF
Simulation of Snow Processes Beneath a Boreal Scots Pine Canopy 被引量:1
12
作者 李伟平 罗勇 +1 位作者 夏坤 刘新 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第3期348-360,共13页
A physically-based multi-layer snow model Snow-Atmosphere-Soil-Transfer scheme (SAST) and a land surface model Biosphere-Atmosphere Transfer Scheme (BATS) were employed to investigate how boreal forests influence ... A physically-based multi-layer snow model Snow-Atmosphere-Soil-Transfer scheme (SAST) and a land surface model Biosphere-Atmosphere Transfer Scheme (BATS) were employed to investigate how boreal forests influence snow accumulation and ablation under the canopy. Mass balance and energetics of snow beneath a Scots pine canopy in Finland at different stages of the 2003-2004 and 2004-2005 snow seasons are analyzed. For the fairly dense Scots pine forest, drop-off of the canopy-intercepted snow contributes, in some cases, twice as much to the underlying snowpack as the direct throughfall of snow. During early winter snow melting, downward turbulent sensible and condensation heat fluxes play a dominant role together with downward net longwave radiation. In the final stage of snow ablation in middle spring, downward net all- wave radiation dominates the snow melting. Although the downward sensible heat flux is comparable to the net solar radiation during this period, evaporative cooling of the melting snow surface makes the turbulent heat flux weaker than net radiation. Sensitivities of snow processes to leaf area index (LAI) indicate that a denser canopy speeds up early winter snowmelt, but also suppresses melting later in the snow season. Higher LAI increases the interception of snowfall, therefore reduces snow accumulation under the canopy during the snow season; this effect and the enhancement of downward longwave radiation by denser foliage outweighs the increased attenuation of solar radiation, resulting in earlier snow ablation under a denser canopy. The difference in sensitivities to LAI in two snow seasons implies that the impact of canopy density on the underlying snowpack is modulated by interannual variations of climate regimes. 展开更多
关键词 snow process boreal forest RADIATION turbulent flux sensitivity
下载PDF
How much carbon can the Siberian boreal taiga store: a case study of partitioning among the above-ground and soil pools 被引量:1
13
作者 Vladimir L.Gavrikov Ruslan A.Sharafutdinov +6 位作者 Anastasyia A.Knorre Nina V.Pakharkova Olga M.Shabalina Irina N.Bezkorovaynaya Irina V.Borisova Marina G.Erunova Rem G.Khlebopros 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第4期907-912,共6页
In the context of global carbon cycle management, accurate knowledge of carbon content in forests is a relevant issue in contemporary forest ecology. We measured the above-ground and soil carbon pools in the darkconif... In the context of global carbon cycle management, accurate knowledge of carbon content in forests is a relevant issue in contemporary forest ecology. We measured the above-ground and soil carbon pools in the darkconiferous boreal taiga. We compared measured carbon pools to those calculated from the forest inventory records containing volume stock and species composition data. The inventory data heavily underestimated the pools in the study area(Stolby State Nature Reserve, central Krasnoyarsk Territory, Russian Federation). The carbon pool estimated from the forest inventory data varied from 25(t ha-1)(low-density stands) to 73(t ha-1)(highly stocked stands). Our estimates ranged from 59(t ha-1)(lowdensity stands) to 147(t ha-1)(highly stocked stands). Our values included living trees, standing deadwood, living cover, brushwood and litter. We found that the proportion of biomass carbon(living trees): soil carbon varied from99:1 to 8:2 for fully stocked and low-density forest stands,respectively. This contradicts the common understanding that the biomass in the boreal forests represents only16–20 % of the total carbon pool, with the balance being the soil carbon pool. 展开更多
关键词 stands forests boreal biomass litter varied inventory partitioning store ecology
下载PDF
Response of saproxylic insect communities to logging history, tree species, stage of decay, and wood posture in the central Nearctic boreal forest
14
作者 R.W.James Dennis Jay R.Malcolm +1 位作者 Sandy M.Smith M.Isabel Bellocq 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1365-1377,共13页
Saproxylic insect assemblages are essential functional components of forest ecosystems that can be affected by forest management.We used a split-plot ANOVA design to analyze differences in selected saproxylic insects... Saproxylic insect assemblages are essential functional components of forest ecosystems that can be affected by forest management.We used a split-plot ANOVA design to analyze differences in selected saproxylic insects(all arthropod orders and dipteran and parasitic hymenopteran families) emerging from dead wood of sites with different logging histories(horse-logged,mechanically-logged and unlogged),tree species(Populus and Picea),stage of decay(early-and late-decay stages) and posture(standing and downed logs) in the boreal forest of central Canada.No clear effects of logging history were seen for the studied taxa; however,interaction between logging history and other dead wood features was apparent.Cecidomyiidae consistently emerged more from Populus than from Picea dead wood.Most of the studied saproxylic families were more abundant in late-decay than in early-decay wood.Dipterans of the Cecidomyiidae,Ceratopogonidae,Empididae,Mycetophilidae and Sciaridae families,and hymenopterans of the Diapriidae and Ichneumonidae families were significantly more abundant in downed than in standing dead wood.In contrast,Mymaridae was most abundant in standing dead wood.Our study provides evidence that some insects at high taxonomic levels respond differently to dead wood quality,and this could inform future management strategies in the boreal forest for the conservation of saproxylic fauna and their ecological functions. 展开更多
关键词 boreal forest Dead wood quality Forest harvesting High-level taxa Saproxylic insects
下载PDF
Holocene variations of wildfire occurrence as a guide for sustainable management of the northeastern Canadian boreal forest
15
作者 Ahmed El-Guellab Hugo Asselin +2 位作者 Sylvie Gauthier Yves Bergeron Adam A.Ali 《Forest Ecosystems》 SCIE CSCD 2015年第3期190-196,共7页
Background: Cumulative impacts of wildfires and forest harvesting can cause shifts from closed-crown forest to open woodland in boreal ecosystems. To lower the probability of occurrence of such catastrophic regime shi... Background: Cumulative impacts of wildfires and forest harvesting can cause shifts from closed-crown forest to open woodland in boreal ecosystems. To lower the probability of occurrence of such catastrophic regime shifts,forest logging must decrease when fire frequency increases, so that the combined disturbance rate does not exceed the Holocene maximum. Knowing how climate warming will affect fire regimes is thus crucial to sustainably manage the forest. This study aimed to provide a guide to determine sustainable forest harvesting levels, by reconstructing the Holocene fire history at the northern limit of commercial forestry in Quebec using charcoal particles preserved in lake sediments.Methods: Sediment cores were sampled from four lakes located close to the northern limit of commercial forestry in Quebec. The cores were sliced into consecutive 0.5 cm thick subsamples from which 1 cm3 was extracted to count and measure charcoal particles larger than 150 microns. Age-depth models were obtained for each core based on accelerator mass spectroscopy(AMS) radiocarbon dates. Holocene fire histories were reconstructed by combining charcoal counts and age-depth models to obtain charcoal accumulation rates and, after statistical treatment,long-term trends in fire occurrence(expressed as number of fires per 1000 years).Results: Fire occurrence varied between the four studied sites, but fires generally occurred more often during warm and dry periods of the Holocene, especially during the Holocene Thermal Maximum(7000–3500 cal. BP), when fire occurrence was twice as high as at present.Conclusions: The current fire regime in the study area is still within the natural range of variability observed over the Holocene. However, climatic conditions comparable to the Holocene Thermal Maximum could be reached within the next few decades, thus substantially reducing the amount of wood available to the forest industry. 展开更多
关键词 Fire occurrence HOLOCENE boreal forest Northern li
下载PDF
Identifying Possible Climate Change Signals Using Meteorological Parameters in Short-Term Fire Weather Variability for Russian Boreal Forest in the Republic of Sakha (Yakutia)
16
作者 Kiunnei Kirillina Wanglin Yan +1 位作者 Lynn Thiesmeyer Evgeny G. Shvetsov 《Open Journal of Forestry》 2020年第3期320-359,共40页
The Boreal forest is a terrestrial ecosystem highly vulnerable to the impacts of short-term climate and weather variabilities. Detecting abrupt, rapid climate-induced changes in fire weather and related changes in fir... The Boreal forest is a terrestrial ecosystem highly vulnerable to the impacts of short-term climate and weather variabilities. Detecting abrupt, rapid climate-induced changes in fire weather and related changes in fire seasonality can provide important insights to assessing impacts of climate change on forestry. This paper, taking the Sakha Republic of Russia as study area, aims to suggest an approach for detecting signals indicating climate-induced changes in fire weather to express recent fire weather variability by using short-term ranks of major meteorological parameters such as air temperature and atmospheric precipitation. Climate data from the “Global Summary of the Day Product” of NOAA (the United States National Oceanic and Atmospheric Administration) for 1996 to 2018 were used to investigate meteorological parameters that drive fire activity. The detection of the climate change signals is made through a 4-step analysis. First, we used descriptive statistics to grasp monthly, annual, seasonal and peak fire period characteristics of fire weather. Then we computed historical normals for WMO reference period, 1961-1990, and the most recent 30-year period for comparison with the current means. The variability of fire weather is analyzed using standard deviation, coefficient of variation, percentage departures from historical normals, percentage departures from the mean, and precipitation concentration index. Inconsistency and abrupt changes in the evolution of fire weather are assessed using homogeneity analysis whilst a Mann-Kendall test is used to detect significant trends in the time series. The results indicate a significant increase of temperature during spring and fall months, which extends the fire season and potentially contributes to increase of burned areas. We again detected a significant rainfall shortage in September which extended the fire season. Furthermore, this study suggests a new approach in statistical methods appropriate for the detection of climate change signals on fire weather variability using short-term climate ranks and evaluation of its impact on fire seasonality and activity. 展开更多
关键词 boreal Forest Fires Climate Change Signal Short-Term Climate Variability Fire Weather Hydrometeorological Trends
下载PDF
Long-term monitoring of cycles in Clethrionomys rutilus in the Yukon boreal forest
17
作者 Charles J.KREBS Alice J.KENNEY +1 位作者 B.Scott GILBERT Rudy BOONSTRA 《Integrative Zoology》 SCIE CSCD 2024年第1期27-36,共10页
Baseline studies of small rodent populations in undisturbed ecosystems are rare.We report here 50 years of mon-itoring and experimentation in Yukon of a dominant rodent species in the North American boreal forest,the ... Baseline studies of small rodent populations in undisturbed ecosystems are rare.We report here 50 years of mon-itoring and experimentation in Yukon of a dominant rodent species in the North American boreal forest,the red-backed vole Clethrionomys rutilus.These voles breed in summer,weigh 20–25 g,and reach a maximum density of 20 to 25 per ha.Their populations have shown consistent 3–4-year cycles for the last 50 years with the only change being that peak densities averaged 8/ha until 2000 and 18/ha since that year.During the last 25 years,we have measured food resources,predator numbers,and winter weather,and for 1-year social interactions,to estimate their contribution to changes in the rate of summer increase and the rate of overwinter decline.All these potential limiting factors could contribute to changes in density,and we measured their relative contributions statistically with multiple regressions.The rate of winter decline in density was related to both food supply and winter severity.The rate of summer increase was related to summer berry crops and white spruce cone production.No measure of predator numbers was related to winter or summer changes in vole abundance.There was a large signal of climate change effects in these populations.There is no density dependence in summer population growth and only a weak one in winter population declines.None of our results provide a clear understanding of what generates 3–4-year cycles in these voles,and the major missing piece may be an understanding of social interactions at high density. 展开更多
关键词 boreal forest climate change density dependence population cycles PREDATION winter severity
原文传递
Bioclimate-Vegetation Interrelations along the Pacific Rim of North America
18
作者 Manuel Peinado Gustavo Díaz +4 位作者 José Delgadillo Francisco Manuel Ocana-Peinado Miguel Angel Macías Juan Luis Aguirre Alejandro Aparicio 《American Journal of Plant Sciences》 2012年第10期1430-1450,共21页
This study was designed to examine relationships between climate and vegetation of the Pacific rim of North America, from the Mediterranean deserts of California to Alaska’s boreal taiga. Relations were inferred from... This study was designed to examine relationships between climate and vegetation of the Pacific rim of North America, from the Mediterranean deserts of California to Alaska’s boreal taiga. Relations were inferred from temperature and rainfall data recorded at 457 weather stations and by sampling the vegetation around these stations. Climate data were used to construct climatograms, calculate forty one variables and detect main latitudinal and longitudinal gradients. In order to identify the best functions able to relate our variables, polynomial and non-polynomial regressions were performed. The k-means algorithm was the clustering method used to validate the variables that could best support our bioclimatic classification. The variable that best fitted our classification was finally used to prepare a discriminatory key for bioclimates. Across this extensive area three macrobioclimates were identified, Mediterranean, Temperate and Bo- real, within which we were able to distinguish nine bioclimates. Finally, we relate the different types of potential natural vegetation to each of these bioclimates and describe their floristic composition and physiognomy. 展开更多
关键词 BIOCLIMATOLOGY boreal forests Mediterranean Vegetation Plant Formations Temperate Rainforests Zonobiomes
下载PDF
Effect of fire disturbance on active organic carbon of Larix gmelinii forest soil in Northeastern China 被引量:3
19
作者 Xin Lu Haiqing Hu Long Sun 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第4期763-774,共12页
Active organic carbon in soil has high biological activity and plays an important role in forest soil ecosystem structure and function. Fire is an important disturbance factor in many forest ecosystems and occurs freq... Active organic carbon in soil has high biological activity and plays an important role in forest soil ecosystem structure and function. Fire is an important disturbance factor in many forest ecosystems and occurs frequently over forested soils. However, little is known about its impact on soil active organic carbon (SAOC), which is important to the global carbon cycle. To investigate this issue, we studied the active organic carbon in soils in the Larix gmelinii forests of the Da Xing'an Mountains (Greater Xing'an Mountains) in Northeastern China, which had been burned by high-intensity wildfire in two different years (2002 and 2008). Soil samples were collected monthly during the 2011 growing season from over 12 sample plots in burned and unburned soils and then analyzed to examine the dynamics of SAOC. Our results showed that active organic carbon content changed greatly after fire disturbance in relation to the amount of time elapsed since the fire. There were significant differences in microbial biomass carbon, dissolved organic carbon, light fraction organic carbon, particulate organic carbon between burned and unburned sample plots in 2002 and 2008 (p < 0.05). The correlations between active organic carbon and environmental factors such as water content, pH value and temperature of soils, and correlations between each carbon component changed after fire disturbance, also in relation to time since the fire. The seasonal dynamics of SAOC in all of the sample plots changed after fire disturbance; peak values appeared during the growing season. In plots burned in 2002 and 2008, the magnitude and occurrence time of peak values differed. Our findings provide basic data regarding the impact of fire disturbance on boreal forest soil-carbon cycling, carbon-balance mechanisms, and carbon contributions of forest ecosystem after wildfire disturbance. 展开更多
关键词 boreal forest Carbon cycling Da Xing'an Mountains FIRE Soil active organic carbon
下载PDF
The global rainforest mapping project JERS-1: a paradigm of international collaboration for monitoring land cover change 被引量:3
20
作者 DENG Xiang-zheng, ZHAN Jin-yan, LIU Ji-yuan, ZHUANG Da-fang (Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 2002年第1期15-22,共8页
The Global Rainforest Mapping (GRFM) project was initiated in 1995 and, through a dedicated data acquisition policy by the National Space Development Agency of Japan (NASDA), data acquisitions could be completed withi... The Global Rainforest Mapping (GRFM) project was initiated in 1995 and, through a dedicated data acquisition policy by the National Space Development Agency of Japan (NASDA), data acquisitions could be completed within a 1.5-year period, resulting in a spatially and temporally homogeneous coverage to contain the entire Amazon Basin from the Atlantic to the Pacific; Central America up to the Yucatan Peninsular in Mexico; equatorial Africa from Madagascar and Kenya in the east to Sierra Leone in the west; and Southeast Asia, including Papua New Guinea. To some extent, GRFM project is an international endeavor led by NASDA, with the goal of producing spatially and temporally contiguous Synthetic Aperture Radar (SAR) data sets over the tropical belt on the Earth by use of the JERS-1 L-band SAR, through the generation of semi-continental, 100m resolution, image mosaics. The GRFM project relies on extensive collaboration with the National Aeronautics and Space Administration (NASA), the Joint Research Center of the European Commission (JRC) and the Japanese Ministry of International Trade and Industry (MITI) for data acquisition, processing, validation and product generation. A science program is underway in parallel with product generation. This involves the agencies mentioned above, as well as a large number of international organizations, universities and individuals to perform field activities and data analysis at different levels. 展开更多
关键词 Global Rainforest Mapping low-resolution data regional mosaic Global boreal Forest Mapping
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部