期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
Influence of Surface Nano-structured Treatment on Pack Boriding of H13 Steel 被引量:2
1
作者 Lingyun XU Xiaochun WU Hongbin WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第4期525-528,共4页
In order to lower the boriding temperature of hot work steel H13, method of surface mechanical attrition treatment (SMAT), which can make the grain size of the surface reach nano-scale, was used before pack boriding... In order to lower the boriding temperature of hot work steel H13, method of surface mechanical attrition treatment (SMAT), which can make the grain size of the surface reach nano-scale, was used before pack boriding. The growth of the boride layer was studied in a function of boriding temperature and time. By TEM (transmission electron microscopy), SEM (scanning electron microscopy), XRD (x-ray diffraction) and microhardness tests, the grain size, thermal stability of the nano-structured (NS) surface and the thickness,appearance, phases of the surface boride layer were studied. Kinetic of boriding was compared between untreated samples and treated samples. Results showed that after SMAT, the boride layer was thicker and the hardness gradient was smoother. Furthermore, after boriding at a low temperature of 700℃ for 8 h, a boride layer of about 5 μm formed on the NS surface. This layer was toothlike and wedged into the substrate, which made the surface layer combine well with the substrate. The phase of the boride layer was Fe2B. Research on boriding kinetics indicated that the activation energy was decreased for the treated samples. 展开更多
关键词 boriding Surface mechanical attrition treatment (SMAT) H13 steel boriding kinetic
下载PDF
Microstructure and of Mechanics Microwave Boriding 被引量:1
2
作者 YE Weiping HUANG Zilin +1 位作者 ZHANG Qiaoxin ZHANG Qinyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期528-531,共4页
Microwave boriding layer microstructure of carbon steels and its diffusion mechanics were studied. The results show that the existence of microwave field in the boriding can't change the growth mechanics of boriding ... Microwave boriding layer microstructure of carbon steels and its diffusion mechanics were studied. The results show that the existence of microwave field in the boriding can't change the growth mechanics of boriding layer. Compared with conventional boriding, if the treatment temperature and time remain constantly, the descend rate of the boriding layer thickness with the increase of carbon content of steel is smaller. The diffusion activation energy ofT8 steel is 2.6× 10^5 J/mol between the temperature of 750 ℃ and 900 ℃ in microwave field, which is in the same order of conventional boriding. 展开更多
关键词 microwave boriding boriding layer diffusion activation energy
下载PDF
Investigation of the Boriding Process of the Ti-Al Intermetallic Alloy GE48-2-2 Taking into Account the Probability of the Influence of the Substrate Modification
3
作者 Dimitrios I. Zagkliveris Georgios K. Triantafyllidis 《Materials Sciences and Applications》 2018年第11期873-882,共10页
Boriding of the Ti-Al intermetallic GE48-2-2 at 1273 K for 10 hours was performed. In order to ensure that no any serious alteration occurred in the substrate, it was previously examined with X-Ray Diffractometry (XRD... Boriding of the Ti-Al intermetallic GE48-2-2 at 1273 K for 10 hours was performed. In order to ensure that no any serious alteration occurred in the substrate, it was previously examined with X-Ray Diffractometry (XRD), after it has undergone an annealing process at the temperature of boronizing. Subsequently, we examined the coating with XRD and Scanning Electron Microscopy, in order to characterize its structure and morphology. A dense TiΒ2 layer, 10 - 15 μm thick, was formed, but also Cr2B3 and NbN, BN and some Ti-Al phases were detected. Efforts were undertaken to focus on influence of the substrate modification, towards the quality of the coating. 展开更多
关键词 TITANIUM Aluminide boriding TITANIUM BORIDE SUBSTRATE MODIFICATION Phase Analysis X-Ray Diffraction
下载PDF
Mechanical Characterization and Micro-Wear of FeB-Fe<sub>2</sub>B Layers on Boriding AISI D2 and AISI 4340 Steels
4
作者 Suellen Terroso de Mendonça Ferreira André Luiz Klemes Bacco +1 位作者 Eduardo Mauro do Nascimento Carlos Maurício Lepienski 《Materials Sciences and Applications》 2021年第7期330-344,共15页
The mechanical behavior and wear of the different hardened phases with bore-induced changes in AISI 4340 and AISI D2 steels were investigated. The hardness and modulus of elasticity were measured by nanoindentation an... The mechanical behavior and wear of the different hardened phases with bore-induced changes in AISI 4340 and AISI D2 steels were investigated. The hardness and modulus of elasticity were measured by nanoindentation and the values obtained for the layers in AISI D2 steel were 18 GPa and 325 GPa in the Fe<sub>2</sub>B boride phase, and 20 GPa and 360 GPa in the FeB boride phase, respectively. The AISI 4340 steel presented mainly the Fe<sub>2</sub>B phase. It was then possible to analyze the coefficient of friction obtained in the Fe<sub>2</sub>B phase of the steel AISI 4340 presented a range of 0.04 to 0.06. The AISI D2 steel presents two different phases in the boride layer being the coefficient of friction higher for the test in the FeB phase than for Fe<sub>2</sub>B, and the values vary from 0.065 to 0.075. These parameters were obtained with micro-wear tests. No adhesion failures were observed after the sliding tests in the interface of the two different boride layers. Cracks in the FeB phase after the sliding test were much more frequent. 展开更多
关键词 Iron Boride Micro-Wear Test Mechanical Properties boriding
下载PDF
Effect of Surface Nanocrystallization on Cr-Rare Earth-Boriding for Steel Q235 at Low-Temperature 被引量:1
5
作者 Xingdong Yuan Xiaojie Yang +1 位作者 Feng Tian Bin Xu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第1期79-84,共6页
A nanostructured layer was fabricated on the surface of steel Q235 by using fast multiple rotation rolling( FMRR). The Cr-Rare earth-boriding process was carried out followed at different temperatures.Experimental res... A nanostructured layer was fabricated on the surface of steel Q235 by using fast multiple rotation rolling( FMRR). The Cr-Rare earth-boriding process was carried out followed at different temperatures.Experimental results showed that the thickness of the boride layer was significantly increased by surface nanocrystallization. The morphology of the boride layer was saw-toothed. An uniform,continuous and dense boride layer was obtained and adhered well to the substrate. The penetrating speed of FMRR specimens was enhanced by 1.9,1.7 and 1.5 times when the Cr-Rare earth-boriding temperature was 843,873 and 923 K.Severe plastic deformation,which grain size was approximately 100 nm,was observed on steel Q235 surface.Mechanism of Cr-Rare earth-boriding was also studied. 展开更多
关键词 NANOSTRUCTURE low temperature STEEL Q235 BORIDE layer
下载PDF
The Study on Plasma Boriding of H13 Steel at Low Temperature Assisted by Surface Nanocrystallization Technology 被引量:2
6
作者 Yang Haopeng Wu Xiaochun Wu Tianrong 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第S1期309-314,共6页
Plasma boriding treatment was carried out at low temperature for the hot work die steel H13 assisted by surface nanocrystallization technology in this paper.At the same time,the thermal fatigue property of it was inve... Plasma boriding treatment was carried out at low temperature for the hot work die steel H13 assisted by surface nanocrystallization technology in this paper.At the same time,the thermal fatigue property of it was investigated through thermal fatigue testing with 3000 continuous cycles from room temperature to 700℃.The changes of structure and grain size in surface layer were characterized by high-resolution transmission electron microscopy(HRTEM).After plasma boriding at 580℃ for 4 h,the phase composition,morphology and in-situ nanomechanical property of boride layer were investigated by X-ray diffraction spectroscopy(XRD),scanning electron microscope(SEM),nanoindentation test,respectively.The results show that the boride layer with about thickness of 5μm is composed with two phases of Fe2B and FeB.The nanohardness of boride layer is as high as 21 GPa.Furthermore,thermal fatigue testing shows that the boride layer with excellent oxidation resistance and mechanical strength at elevated temperatures could effectively delay the crack initiation and impede the crack propagation.Therefore,the thermal fatigue property of H13 can be remarkably improved. 展开更多
关键词 HOT work DIE steel H13 surface NANOCRYSTALLIZATION PLASMA boriding treatment at low temperature
原文传递
Microstructure Characteristics and Elevated Temperature Mechanical Properties of a B Containedβ-solidifiedγ-TiAl Alloy
7
作者 王秀琦 GUO Ruiqi +5 位作者 刘国怀 LI Tianrui YANG Yuxuan CHEN Yang XIN Meiling WANG Zhaodong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期738-746,共9页
The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnac... The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnace cooling(FC).The phase transformation,microstructure evolution and tensile properties for as-cast and HTed alloys were investigated.Results indicate that three main phase transformation points are determined,T_(eut)=1164.3℃,T_(γsolv)=1268.3℃and T_(βtrans)=1382.8℃.There are coarse lamellar colonies(300μm in length)and neighbor reticular B2 andγgrain(3-5μm)in as-cast alloy,while lamellar colonies are markedly refined and multi-oriented(20-50μm)as well as the volume fraction and grain sizes of equiaxedγand B2 phases(about 15μm)significantly increase in as-HTed alloy.Phase transformations involvingα+γ→α+γ+β/B2 and discontinuousγcoarsening contribute to the above characteristics.Borides(1-3μm)act as nucleation sites forβ_(eutectic) and produce massiveβgrains with different orientations,thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure.Tensile curves show both the alloys exhibit suitable performance at 800℃.As-cast alloy shows a higher ultimate tensile stress of 647 MPa,while a better total elongation of more than 41%is obtained for as-HTed alloy.The mechanical properties improvement is mainly attributed to fine,multi-oriented lamellar colonies,coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation. 展开更多
关键词 TiAl alloy phase transformation heat treatment BORIDE microstructure mechanical properties
下载PDF
Research Progress of Non-oxide and High Entropy Ceramic Coatings
8
作者 Junshuai CHEN Yulong WANG +5 位作者 Zeyu WANG Xue SHEN TengyuDU Yubo GONG Zhigang YANG Gang YU 《Research and Application of Materials Science》 2024年第1期23-32,共10页
Ceramic coatings play a keyrole in extending the service life of materials in aerospaceandenergy fields byprotectingmaterials from high temperature,oxidation,corrosion and thermal stress.Non-oxide and high entropy cer... Ceramic coatings play a keyrole in extending the service life of materials in aerospaceandenergy fields byprotectingmaterials from high temperature,oxidation,corrosion and thermal stress.Non-oxide and high entropy ceramics are new emerging coating materials which have been researched and developed in recent years.Compared with traditional oxide ceramics,non-oxide ceramics have better high temperature stability,oxidation resistance and erosion resistance.These characteristics make non-oxide ceramics perform well in extreme environments.It is particularly noteworthy that the non-oxide high entropy ceramic is a uniform solid solution composed of at least four or fiveatoms.Their unique structure and outstanding propertiesshow great potential application in the field of coating.In this paper,the researches aboutregulating microstructure,preparation technology and properties of nitride and its high entropy system,carbide and its high entropy system and boride and its high entropy system in coating field are summarized,and their future development and prospects are prospected. 展开更多
关键词 NITRIDE CARBIDE BORIDE High entropy ceramic coating
下载PDF
Bimetallic NiCo boride nanoparticles confined in a MXene network enable efficient ambient ammonia electrosynthesis
9
作者 Chuang Wang Qin-Chao Wang +9 位作者 Ke-Xin Wang Michiel De Ras Kaibin Chu Liang-Liang Gu Feili Lai Sheng-You Qiu Hele Guo Peng-Jian Zuo Johan Hofkens Xiao-Dong Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期469-478,I0012,共11页
Ambient electrocatalytic nitrogen fixation is an emerging technology for green ammonia synthesis,but the absence of optimized,stable and performant catalysts can render its practical application challenging.Herein,bim... Ambient electrocatalytic nitrogen fixation is an emerging technology for green ammonia synthesis,but the absence of optimized,stable and performant catalysts can render its practical application challenging.Herein,bimetallic NiCo boride nanoparticles confined in MXene are shown to accomplish highperformance nitrogen reduction electrolysis.Ta king advantage of the synergistic effect in specific compositions with unique electronic d and p orbits and typical architecture of rich nanosized particles embedded in the interconnected conductive network,the synthesized MXene@NiCoB composite demonstrates extensive improvements in nitrogen molecule chemisorption,active area exposure and charge transport.As a result,optimal NH3 yield rate of 38.7μg h^(-1) mgcat^(-1).and Faradaic efficiency of 6.92%are acquired in0.1 M Na_(2)SO_(4) electrolyte.Moreover,the great catalytic performance can be almost entirely maintained in the cases of repeatedly-cycled and long-term electrolysis.Theoretical investigations reveal that the nitrogen reduction reaction on MXene@NiCoB catalyst proceeds according to the distal pathway,with a distinctly-reduced energy barrier relative to the Co2B counterpart.This work may inspire a new route towards the rational catalyst design for the nitrogen reduction reaction. 展开更多
关键词 Nitrogen reduction reaction ELECTROCATALYST MXene BORIDE AMMONIA
下载PDF
A fresh class of superconducting and hard pentaborides
10
作者 Hui Xie Hong Wang +5 位作者 Fang Qin Wei Han Suxin Wang Youchun Wang Fubo Tian Defang Duan 《Matter and Radiation at Extremes》 SCIE EI CSCD 2023年第5期89-95,共7页
On the basis of the current theoretical understanding of boron-based hard superconductors under ambient conditions,numerous studies have been conducted with the aim of developing superconducting materials with favorab... On the basis of the current theoretical understanding of boron-based hard superconductors under ambient conditions,numerous studies have been conducted with the aim of developing superconducting materials with favorable mechanical properties using boron-rich compounds.In this paper,first-principles calculations reveal the existence of an unprecedented family of tetragonal pentaborides MB_(5)(M=Na,K,Rb,Ca,Sr,Ba,Sc,and Y),comprising B_(20)cages and centered metal atoms acting as stabilizers and electron donors to the boron sublattice.These compounds exhibit both superconductivity and high hardness,with the maximum superconducting transition temperature T_(c)of 18.6 K being achieved in RbB5 and the peak Vickers hardness Hv of 35.1 GPa being achieved in KB_(5)at 1 atm.The combination of these properties is particularly evident in KB_(5),RbB5,and BaB5,with Tc values of∼14.7,18.6,and 16.3 K and H_(v)values of∼35.1,32.4,and 33.8 GPa,respectively.The results presented here reveal that pentaborides can provide a framework for exploring and designing novel superconducting materials with favorable hardness at achievable pressures and even under ambient conditions. 展开更多
关键词 BORIDE BORON SUPERCONDUCTING
下载PDF
Anisotropic thermal expansion in high-entropy multicomponent AlB_(2)-type diboride solid solutions
11
作者 Frédéric Monteverde Mattia Gaboardi +3 位作者 Federico Saraga Lun Feng William Fahrenholtz Gregory Hilmas 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期331-343,共13页
High-entropy(HE)ultra-high temperature ceramics have the chance to pave the way for future applications propelling technology advantages in the fields of energy conversion and extreme environmental shielding.Among oth... High-entropy(HE)ultra-high temperature ceramics have the chance to pave the way for future applications propelling technology advantages in the fields of energy conversion and extreme environmental shielding.Among others,HE diborides stand out owing to their intrinsic anisotropic layered structure and ability to withstand ultra-high temperatures.Herein,we employed in-situ high-resolution synchrotron diffraction over a plethora of multicomponent compositions,with four to seven transition metals,with the intent of understanding the thermal lattice expansion following different composition or synthesis process.As a result,we were able to control the average thermal expansion(TE)from 1.3×10^(−6)to 6.9×10^(−6)K^(−1)depending on the combination of metals,with a variation of in-plane to out-of-plane TE ratio ranging from 1.5 to 2.8. 展开更多
关键词 ultra-high temperature ceramics borides high-entropy ceramics spark plasma sintering synchrotron diffraction anisotropic thermal expansion
下载PDF
Simultaneously removal of P and B from Si by Sr and Zr co-addition during Al–Si low-temperature solvent refining
12
作者 Chen Chen Jingwei Li +2 位作者 Qiuxia Zuo Boyuan Ban Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期365-377,共13页
To remove the key impurity elements,P and B,from primary Si simultaneously,Sr and Zr co-addition to Al-Si alloy systems during solvent refining has been investigated.Sr reacts with Al,Si,and P in the melt to form a P-... To remove the key impurity elements,P and B,from primary Si simultaneously,Sr and Zr co-addition to Al-Si alloy systems during solvent refining has been investigated.Sr reacts with Al,Si,and P in the melt to form a P-containing Al_(2)Si_(2)Sr phase and Zr reacts with B to form a ZrB_(2) phase.In the Al-Si-Sr-Zr system,high removal fractions of P and B in the primary Si,with 84.8%-98.4%and 90.7%-96.7%,respectively,are achieved at the same time,respectively.The best removal effect is obtained in the sample with the addition of Sr-32000+Zr-3000μg·kg^(-1),and the removal fractions of P and B in the purified Si reach 98.4%and 96.1%.Compared with the Sr/Zr single-addition,the removal effects of Sr and Zr co-addition on P and B do not show a significant downward trend,indicating that the nucleation and growth of the B/P-containing impurity phases are mutually independent.Finally,an evolution model is proposed to describe the nucleation and the growth stages of Sr/Zr-containing compound phases,which reveals the interaction between the impurity phases and the primary Si. 展开更多
关键词 Al2Si2Sr phase zirconium boride phase phase directional solidification solvent refining
下载PDF
浅谈《材料力学》教学中如何联系实际培养学生工程能力 被引量:1
13
作者 杨红韻 邓国红 《重庆理工大学学报(自然科学)》 CAS 1995年第S1期55-56,共2页
浅谈《材料力学》教学中如何联系实际培养学生工程能力杨红韻,邓国红(重庆工业管理学院机械系)随着现代科学技术的发展,社会对机械工程技术人员的要求越来越高。作为工科高等院校的《材力》课教学必须适应这种要求。一方面要求学生... 浅谈《材料力学》教学中如何联系实际培养学生工程能力杨红韻,邓国红(重庆工业管理学院机械系)随着现代科学技术的发展,社会对机械工程技术人员的要求越来越高。作为工科高等院校的《材力》课教学必须适应这种要求。一方面要求学生比较系统牢固地掌握机械类专业所需要... 展开更多
关键词 metat FACE strengthening BONDING COMBINED boriding
下载PDF
锌钝化新工艺的研究
14
作者 杜巧云 《平顶山学院学报》 1995年第S1期12-13,共2页
锌钝化新工艺的研究杜巧云(洛阳师专,471023)1前言为了获得良好的外观和满足某些特殊要求,对锌及锌合金制件的表面通常要进行钝化处理。过去的钝化工艺多是高铬钝化工艺,由于高铬液(含铬N2009—300g/din3)... 锌钝化新工艺的研究杜巧云(洛阳师专,471023)1前言为了获得良好的外观和满足某些特殊要求,对锌及锌合金制件的表面通常要进行钝化处理。过去的钝化工艺多是高铬钝化工艺,由于高铬液(含铬N2009—300g/din3)CrO3浓度大,被钝化件出槽时带出... 展开更多
关键词 metat FACE strengthening BONDING COMBINED boriding
下载PDF
Effects of carbon content on high-temperature mechanical and thermal fatigue properties of high-boron austenitic steels 被引量:5
15
作者 Xiang Chen Zhi-sheng Wang +2 位作者 Yan-xiang Li Hua-wei Zhang Yuan Liu 《China Foundry》 SCIE 2016年第1期1-8,共8页
High-temperature mechanical properties of high-boron austenitic steels(HBASs) were studied at 850 °C using a dynamic thermal-mechanical simulation testing machine. In addition, the thermal fatigue properties of t... High-temperature mechanical properties of high-boron austenitic steels(HBASs) were studied at 850 °C using a dynamic thermal-mechanical simulation testing machine. In addition, the thermal fatigue properties of the alloys were investigated using the self-restraint Uddeholm thermal fatigue test, during which the alloy specimens were cycled between room temperature and 800°C. Stereomicroscopy and scanning electron microscopy were used to study the surface cracks and cross-sectional microstructure of the alloy specimens after the thermal fatigue tests. The effects of carbon content on the mechanical properties at room temperature and high-temperature as well as thermal fatigue properties of the HBASs were also studied. The experimental results show that increasing carbon content induces changes in the microstructure and mechanical properties of the HBASs. The boride phase within the HBAS matrix exhibits a round and smooth morphology, and they are distributed in a discrete manner. The hardness of the alloys increases from 239(0.19 wt.% C) to 302(0.29 wt.% C) and 312 HV(0.37 wt.% C); the tensile yield strength at 850 °C increases from 165.1 to 190.3 and 197.1 MPa; and the compressive yield strength increases from 166.1 to 167.9 and 184.4 MPa. The results of the thermal fatigue tests(performed for 300 cycles from room temperature to 800 °C) indicate that the degree of thermal fatigue of the HBAS with 0.29 wt.% C(rating of 2–3) is superior to those of the alloys with 0.19 wt.%(rating of 4–5) and 0.37 wt.%(rating of 3–4) carbon. The main cause of this difference is the ready precipitation of M23(C,B)6-type borocarbides in the alloys with high carbon content during thermal fatigue testing. The precipitation and aggregation of borocarbide particles at the grain boundaries result in the deterioration of the thermal fatigue properties of the alloys. 展开更多
关键词 STEEL AUSTENITE BORIDE high-boron austenitic steel(HBAS) thermal fatigue property
下载PDF
Study of the Performance and Microstructure of CeB_6/B_4C Ceramic Composite via in-situ Synthesis 被引量:2
16
作者 徐璟玉 吴文远 +2 位作者 彭可武 宁福虎 涂赣峰 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期468-472,共5页
CeB6/B4C ceramic composite was fabricated by hot-pressed sintering via in-situ synthesis reaction among B4C, CeOand C. The effects of CeB6 content on the performance and microstructure of CeB6/B4C composites were inve... CeB6/B4C ceramic composite was fabricated by hot-pressed sintering via in-situ synthesis reaction among B4C, CeOand C. The effects of CeB6 content on the performance and microstructure of CeB6/B4C composites were investigated. As the content of CeB6 was 2.42%, the microhardness of CeB6/B4C composite reached the maximum of 40.64 GPa, which was higher than that of monolithic B4C by 52.5%. As the content of CeB6 was 4.89%, the flexibility strength and the fracture toughness of CeB6/B4C composite reached the peak values of 346.7 MPa and 5.95 MPa·m1/2 respectively, which were higher than those of monolithic B4C by 17.96% and 61.7% respectively. The integrated mechanical property of CeB6/B4C ceramic composite with the 4.89% CeB6 content is optimal. It was also found that as in-situ synthesis of CeB6, the crystal grain growth was inhibited, and crystallite arrangement was so compact that the pores gradually reduced. The main fracture mode of CeB6/B4C ceramic composite was intercrystalline rupture, while the transcrystalline rupture was minor. 展开更多
关键词 in-situ synthesis cerium boride boron carbide PERFORMANCE fracture mode rare earths
下载PDF
Solid fraction evolution characteristics of semi-solid A356 alloy and in-situ A356–TiB_2 composites investigated by differential thermal analysis 被引量:2
17
作者 S.Deepak Kumar A.Mandal M.Chakraborty 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第4期389-394,共6页
The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount o... The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling. 展开更多
关键词 particle reinforced composites aluminum alloys titanium boride CASTING solid fraction differential thermal analysis
下载PDF
High Temperature Chemical Reaction of La_2O_3 in H_3BO_3-C System 被引量:2
18
作者 吴文远 徐璟玉 +1 位作者 彭可武 涂赣峰 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第3期282-285,共4页
The high temperature chemical reaction process of La2O3 in H3BO3-C system was studied by means of XRD and TG-DTA.The results showed that dehydration reaction of H3BO3 occurred in the temperature range of 82~390 ℃;La... The high temperature chemical reaction process of La2O3 in H3BO3-C system was studied by means of XRD and TG-DTA.The results showed that dehydration reaction of H3BO3 occurred in the temperature range of 82~390 ℃;La2O3 and B2O3 reacted to form LaB3O6,LaBO3,and B4C in the temperature range of 836~1400℃;at 1450 ℃,B4C and LaBO3 further reacted to form LaB4,and partial LaB4 and B reacted to form LaB6;at 1500 ℃,LaB4 and B reacting into LaB6 was the main reaction,and the content of LaB6 increased with prolonging time. 展开更多
关键词 high temperature chemical reaction lanthanum boride boric acid-carbon lanthanum oxide rare earths
下载PDF
Metal phosphides and borides as the catalytic host of sulfur cathode for lithium–sulfur batteries 被引量:2
19
作者 Rui Gao Zhenyu Wang +2 位作者 Sheng Liu Guangjie Shao Xueping Gao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期990-1002,共13页
Lithium−sulfur batteries are one of the most competitive high-energy batteries due to their high theoretical energy density of _(2)600 W·h·kg^(−1).However,their commercialization is limited by poor cycle sta... Lithium−sulfur batteries are one of the most competitive high-energy batteries due to their high theoretical energy density of _(2)600 W·h·kg^(−1).However,their commercialization is limited by poor cycle stability mainly due to the low intrinsic electrical conductivity of sulfur and its discharged products(Li_(2)S_(2)/Li_(2)S),the sluggish reaction kinetics of sulfur cathode,and the“shuttle effect”of soluble intermediate lithi-um polysulfides in ether-based electrolyte.To address these challenges,catalytic hosts have recently been introduced in sulfur cathodes to en-hance the conversion of soluble polysulfides to the final solid products and thus prevent the dissolution and loss of active-sulfur material.In this review,we summarize the recent progress on the use of metal phosphides and borides of different dimensions as the catalytic host of sulfur cathodes and demonstrate the catalytic conversion mechanism of sulfur cathodes with the help of metal phosphides and borides for high-en-ergy and long-life lithium-sulfur batteries.Finally,future outlooks are proposed on developing advanced catalytic host materials to improve battery performance. 展开更多
关键词 lithium–sulfur batteries sulfur cathode catalytic host metal phosphides metal borides
下载PDF
Reliability evaluation of hardness test methods of hardfacing coatings with hypoeutectic and hypereutectic microstructures 被引量:1
20
作者 Nilay Comez Can Civi Hulya Durmus 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第12期1585-1593,共9页
Hardfacing coatings involve hard carbide/boride phases dispersed in a relatively soft steel matrix.For the hardness measurements of hardfacing coatings,depending on the microstructure,both the hardness test method and... Hardfacing coatings involve hard carbide/boride phases dispersed in a relatively soft steel matrix.For the hardness measurements of hardfacing coatings,depending on the microstructure,both the hardness test method and the applied load affect the hardness results;therefore,they affect the wear performance predictions of the coating.For this reason,the proper hardness test method should be determined according to the microstructure of the coating,and the reliability of the obtained hardness data should be established.This study aimed to determine the most suitable hardness test method for hypoeutectic and hypereutectic microstructures of hardfacing coatings by analyzing the reliability of Rockwell-C and Vickers hardness test results.Reliability analyses showed that Rockwell-C is not a suitable hardness test method for hypereutectic hardfacing coatings.Based on the relationship between wear resistance and hardness,Vickers hardness method was found more suitable for the considered materials. 展开更多
关键词 HARDFACING HARDNESS measurement reliability CARBIDE BORIDE wear
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部