Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk...Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.展开更多
This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations ...This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations for minimization of the makespan(MSN). When tools are expensive, just a single copy of every tool kind is made available for use in the FMS system. Because the tools are housed in a central tool magazine(CTM), which then distributes and delivers them to many machines, because there is no longer a need to duplicate the tools in each machine, the associated costs are avoided. Choosing alternative machines for job operations(jb-ons), assigning tools to jb-ons, sequencing jb-ons on machines, and arranging allied trip activities, together with the TT’s loaded trip times and deadheading periods, are all challenges that must be overcome to achieve the goal of minimizing MSN. In addition to a mixed nonlinear integer programming(MNLIP) formulation for this simultaneous scheduling problem, this paper suggests a symbiotic organisms search algorithm(SOSA) for the problem’s solution. This algorithm relies on organisms’ symbiotic interaction strategies to keep living in an ecosystem. The findings demonstrate that SOSA is superior to the Jaya algorithm in providing solutions and that using alternative machines for operations helps bring down MSN.展开更多
Excavation with tunnel boring machine(TBM)can generate vibrations,causing damages to neighbouring buildings and disturbing the residents or the equipment.This problem is particularly challenging in urban areas,where T...Excavation with tunnel boring machine(TBM)can generate vibrations,causing damages to neighbouring buildings and disturbing the residents or the equipment.This problem is particularly challenging in urban areas,where TBMs are increasingly large in diameter and shallow in depth.In response to this problem,four experimental campaigns were carried out in different geotechnical contexts in France.The vibration measurements were acquired on the surface and inside the TBMs.These measurements are also complemented by few data in the literature.An original methodology of signal processing is pro-posed to characterize the amplitude of the particle velocities,as well as the frequency content of the signals to highlight the most energetic bands.The levels of vibrations are also compared with the thresholds existing in various European regulations concerning the impact on neighbouring structures and the disturbance to local residents.展开更多
Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in...Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in the field of underground space engineering.This paper presented a case study of tunnelling performance prediction method of CBM in sedimentary hard-rock tunnel of Karst landform type by using tunneling data and surrounding rock parameters.The uniaxial compressive strength(UCS),rock integrity factor(Kv),basic quality index([BQ]),rock quality index RQD,brazilian tensile strength(BTS) and brittleness index(BI) were introduced to construct a performance prediction database based on the hard-rock tunnel of Guiyang Metro Line 1 and Line 3,and then established the performance prediction model of cantilever boring machine.Then the deep belief network(DBN) was introduced into the performance prediction model,and the reliability of performance prediction model was verified by combining with engineering data.The study showed that the influence degree of surrounding rock parameters on the tunneling performance of the cantilever boring machine is UCS > [BQ] > BTS >RQD > Kv > BI.The performance prediction model shows that the instantaneous cutting rate(ICR) has a good correlation with the surrounding rock parameters,and the predicting model accuracy is related to the reliability of construction data.The prediction of limestone and dolomite sections of Line 3 based on the DBN performance prediction model shows that the measured ICR and predicted ICR is consistent and the built performance prediction model is reliable.The research results have theoretical reference significance for the applicability analysis and mechanical selection of cantilever boring machine for hard rock tunnel.展开更多
Machine tools,often referred to as the“mother machines”of the manufacturing industry,are crucial in developing smart manufacturing and are increasingly becoming more intelligent.Digital twin technology can promote m...Machine tools,often referred to as the“mother machines”of the manufacturing industry,are crucial in developing smart manufacturing and are increasingly becoming more intelligent.Digital twin technology can promote machine tool intelligence and has attracted considerable research interest.However,there is a lack of clear and systematic analyses on how the digital twin technology enables machine tool intelligence.Herein,digital twin modeling was identified as an enabling technology for machine tool intelligence based on a comparative study of the characteristics of machine tool intelligence and digital twin.The review then delves into state-of-the-art digital twin modelingenabled machine tool intelligence,examining it from the aspects of data-based modeling and mechanism-data dual-driven modeling.Additionally,it highlights three bottleneck issues facing the field.Considering these problems,the architecture of a digital twin machine tool(DTMT)is proposed,and three key technologies are expounded in detail:Data perception and fusion technology,mechanism-data-knowledge hybrid-driven digital twin modeling and virtual-real synchronization technology,and dynamic optimization and collaborative control technology for multilevel parameters.Finally,future research directions for the DTMT are discussed.This work can provide a foundation basis for the research and implementation of digital-twin modeling-enabled machine tool intelligence,making it significant for developing intelligent machine tools.展开更多
Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracer...Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector.展开更多
The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally in...The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.展开更多
Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s d...Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool.展开更多
With the improvement of coal mining speed and mechanization level in China,traditional tunnel boring methods can no longer meet the actual needs.In order to solve the problems of low efficiency,high labor intensity,sl...With the improvement of coal mining speed and mechanization level in China,traditional tunnel boring methods can no longer meet the actual needs.In order to solve the problems of low efficiency,high labor intensity,slow tunnel boring speed,bad working environment and poor safety in traditional tunnel boring,on the basis of analyzing the development and application of coal roadway tunnel boring equipment at home and abroad,complete equipment for high-speed tunnel boring and bolting machines was developed by using the integrated technology of tunnel boring and bolting.The complete equipment for high-speed tunnel boring and bolting machines has the functions of tunnel boring and bolting synchronization,once-tunneling,negative pressure dust removal,digital guidance,independent cutting feed,digital cutting,safety monitoring and data interaction,which has the advantages of safety in use,reliability and efficiency.展开更多
In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machin...In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.展开更多
A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC mac...A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter.展开更多
Through analysis of the basic transformation of a typical body,the error transformations of the position vector and the displacement vector are employed,a general model for positioning errors of NC machine tools by us...Through analysis of the basic transformation of a typical body,the error transformations of the position vector and the displacement vector are employed,a general model for positioning errors of NC machine tools by using kinematics of the multi body system is discussed.By means of 8031 single chip system,intelligent error compensation controller has been developed.The results of experiments on XH714 machining center show that the positioning accuracy is enhanced effectively by more than 50%.展开更多
Parallel kinematics machine (PKM) is advantageous over the serial machine tools in processing the complex-surface products. A manufacturing service system for PKM is developed to provide the services of the complex-...Parallel kinematics machine (PKM) is advantageous over the serial machine tools in processing the complex-surface products. A manufacturing service system for PKM is developed to provide the services of the complex-surface machining for potential geographically-dispersed manufacturing enterprises. In order to easily in- tegrate the external system, Web services are used to encapsulate post-processing functions of PKM legacy sys- tems, including compilation, workspace calculation, interfere calibration, and kinematics transformation. A ser- vice-oriented architecture(SOA) is proposed for the cooperative work between the PKM system and its client. The workflow and the function module of this manufacturing service system are presented. An example shows that as a result of SOA and loose coupling, such a Web service-based manufacturing service system is easier to in- tegrate and interoperate with its client. Meanwhile, the system decreases the manufacturing cost and improves the efficiency than its former kind of distributed system.展开更多
With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that...With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that the frame is the main contributor.Then,influences of constraints,strut length and working ways of the main module have also been investigated.It can be concluded that when one of the main planes of the frame without linear drive unit is constrained,the largest whole stiffness can be acquired.And,the stiffness is much better when the main module is used in a vertical machine tool instead of a horizontal one.Finally,the principle of stiffness variation is summarized when the mobile platform reaches various positions within its working space and when various loads are applied.These achievements have provided critical instructions for the design of the main module for parallel machine tools.展开更多
At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of...At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of disc cutters are characterized as symmetric to each other with respect to the cutter edge plane. This design has some practical defects, such as severe eccentric wear and tipping, etc. In this paper, the current design theory of disc cutter edge angle is analyzed, and the characteristics of the rock-breaking movement of disc cutters are studied. The researching results show that the rotational motion of disc cutters with the cutterhead gives rise to the difference between the interactions of inner rock and outer rock with the contact area of disc cutters, with shearing and extrusion on the inner rock and attrition on the outer rock. The wear of disc cutters at the contact area is unbalanced, among which the wear in the largest normal stress area is most apparent. Therefore, a three-dimensional model theory of rock breaking and an edge angle design theory of transition disc cutter are proposed to overcome the flaws of the currently used TBM cutter heads, such as short life span, camber wearing, tipping. And a corresponding equation is established. With reference to a specific construction case, the edge angle of the transition disc cutter has been designed based on the theory. The application of TBM in some practical project proves that the theory has obvious advantages in enhancing disc cutter life, decreasing replacement frequency, and making economic benefits. The proposed research provides a theoretical basis for the design of TBM three-dimensional disc cutters whose rock-breaking operation time can be effectively increased.展开更多
Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level ...Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.展开更多
Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length...Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians’ experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters’ life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters.展开更多
Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread e...Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread engineering applications. Thus, a reliability modeling and assessment solution aimed at small-sample data of numerical control(NC) machine tools is proposed on the basis of Bayes theories. An expert-judgment process of fusing multi-source prior information is developed to obtain the Weibull parameters' prior distributions and reduce the subjective bias of usual expert-judgment methods. The grid approximation method is applied to two-parameter Weibull distribution to derive the formulas for the parameters' posterior distributions and solve the calculation difficulty of high-dimensional integration. The method is then applied to the real data of a type of NC machine tool to implement a reliability assessment and obtain the mean time between failures(MTBF). The relative error of the proposed method is 5.8020×10-4 compared with the MTBF obtained by the MCMC algorithm. This result indicates that the proposed method is as accurate as MCMC. The newly developed solution for reliability modeling and assessment of NC machine tools under small-sample data is easy, practical, and highly suitable for widespread application in the engineering field; in addition, the solution does not reduce accuracy.展开更多
Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the anal...Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the analyses of cutter motion in the rock breaking process and trajectory of rock breaking point on the cutter edge in rocks. The analytical expressions of the length of face along which the breaking point moves and the length of spiral trajectory of the maximum penetration point are derived. Through observation of rock breaking process of disc cutters as well as analysis of disc rock interaction, the following concepts are proposed: the arc length theory of predicting wear extent of inner and center cutters, and the spiral theory of predicting wear extent of gage and transition cutters. Data obtained from5621 m-long Qinling tunnel reveal that among 39 disc cutters, the relative errors between cumulatively predicted and measured wear values for nine cutters are larger than 20%, while approximately 76.9% of total cutters have the relative errors less than 20%. The proposed method could offer a new attempt to predict the disc cutter's wear extent and changing time.展开更多
文摘Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.
文摘This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations for minimization of the makespan(MSN). When tools are expensive, just a single copy of every tool kind is made available for use in the FMS system. Because the tools are housed in a central tool magazine(CTM), which then distributes and delivers them to many machines, because there is no longer a need to duplicate the tools in each machine, the associated costs are avoided. Choosing alternative machines for job operations(jb-ons), assigning tools to jb-ons, sequencing jb-ons on machines, and arranging allied trip activities, together with the TT’s loaded trip times and deadheading periods, are all challenges that must be overcome to achieve the goal of minimizing MSN. In addition to a mixed nonlinear integer programming(MNLIP) formulation for this simultaneous scheduling problem, this paper suggests a symbiotic organisms search algorithm(SOSA) for the problem’s solution. This algorithm relies on organisms’ symbiotic interaction strategies to keep living in an ecosystem. The findings demonstrate that SOSA is superior to the Jaya algorithm in providing solutions and that using alternative machines for operations helps bring down MSN.
文摘Excavation with tunnel boring machine(TBM)can generate vibrations,causing damages to neighbouring buildings and disturbing the residents or the equipment.This problem is particularly challenging in urban areas,where TBMs are increasingly large in diameter and shallow in depth.In response to this problem,four experimental campaigns were carried out in different geotechnical contexts in France.The vibration measurements were acquired on the surface and inside the TBMs.These measurements are also complemented by few data in the literature.An original methodology of signal processing is pro-posed to characterize the amplitude of the particle velocities,as well as the frequency content of the signals to highlight the most energetic bands.The levels of vibrations are also compared with the thresholds existing in various European regulations concerning the impact on neighbouring structures and the disturbance to local residents.
基金National Natural Science Foundation of China (Grant No.52178393)the Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan (Grant No.2020TD005)Science and Technology Innovation Project of China Railway Construction Bridge Engineering Bureau Group Co.,Ltd.(Grant No.DQJ-2020-B07)。
文摘Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in the field of underground space engineering.This paper presented a case study of tunnelling performance prediction method of CBM in sedimentary hard-rock tunnel of Karst landform type by using tunneling data and surrounding rock parameters.The uniaxial compressive strength(UCS),rock integrity factor(Kv),basic quality index([BQ]),rock quality index RQD,brazilian tensile strength(BTS) and brittleness index(BI) were introduced to construct a performance prediction database based on the hard-rock tunnel of Guiyang Metro Line 1 and Line 3,and then established the performance prediction model of cantilever boring machine.Then the deep belief network(DBN) was introduced into the performance prediction model,and the reliability of performance prediction model was verified by combining with engineering data.The study showed that the influence degree of surrounding rock parameters on the tunneling performance of the cantilever boring machine is UCS > [BQ] > BTS >RQD > Kv > BI.The performance prediction model shows that the instantaneous cutting rate(ICR) has a good correlation with the surrounding rock parameters,and the predicting model accuracy is related to the reliability of construction data.The prediction of limestone and dolomite sections of Line 3 based on the DBN performance prediction model shows that the measured ICR and predicted ICR is consistent and the built performance prediction model is reliable.The research results have theoretical reference significance for the applicability analysis and mechanical selection of cantilever boring machine for hard rock tunnel.
基金Supported by Tianjin Municipal University Science and Technology Development Foundation of China(Grant No.2021KJ176).
文摘Machine tools,often referred to as the“mother machines”of the manufacturing industry,are crucial in developing smart manufacturing and are increasingly becoming more intelligent.Digital twin technology can promote machine tool intelligence and has attracted considerable research interest.However,there is a lack of clear and systematic analyses on how the digital twin technology enables machine tool intelligence.Herein,digital twin modeling was identified as an enabling technology for machine tool intelligence based on a comparative study of the characteristics of machine tool intelligence and digital twin.The review then delves into state-of-the-art digital twin modelingenabled machine tool intelligence,examining it from the aspects of data-based modeling and mechanism-data dual-driven modeling.Additionally,it highlights three bottleneck issues facing the field.Considering these problems,the architecture of a digital twin machine tool(DTMT)is proposed,and three key technologies are expounded in detail:Data perception and fusion technology,mechanism-data-knowledge hybrid-driven digital twin modeling and virtual-real synchronization technology,and dynamic optimization and collaborative control technology for multilevel parameters.Finally,future research directions for the DTMT are discussed.This work can provide a foundation basis for the research and implementation of digital-twin modeling-enabled machine tool intelligence,making it significant for developing intelligent machine tools.
基金Supported by Natural Science Foundation of Shaanxi Province of China(Grant No.2021JM010)Suzhou Municipal Natural Science Foundation of China(Grant Nos.SYG202018,SYG202134).
文摘Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector.
文摘The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.
文摘Machining is as old as humanity, and changes in temperature in both the machine’s internal and external environments can be of great concern as they affect the machine’s thermal stability and, thus, the machine’s dimensional accuracy. This paper is a continuation of our earlier work, which aimed to analyze the effect of the internal temperature of a machine tool as the machine is put into operation and vary the external temperature, the machine floor temperature. Some experiments are carried out under controlled conditions to study how machine tool components get heated up and how this heating up affects the machine’s accuracy due to thermally induced deviations. Additionally, another angle is added by varying the machine floor temperature. The parameters mentioned above are explored in line with the overall thermal stability of the machine tool and its dimensional accuracy. A Robodrill CNC machine tool is used. The CNC was first soaked with thermal energy by gradually raising the machine floor temperature to a certain level before putting the machine in operation. The machine was monitored, and analytical methods were deplored to evaluate thermal stability. Secondly, the machine was run idle for some time under raised floor temperature before it was put into operation. Data was also collected and analyzed. It is observed that machine thermal stability can be achieved in several ways depending on how the above parameters are joggled. This paper, in conclusion, reinforces the idea of machine tool warm-up process in conjunction with a carefully analyzed and established machine floor temperature variation for the approximation of the machine tool’s thermally stability to map the long-time behavior of the machine tool.
文摘With the improvement of coal mining speed and mechanization level in China,traditional tunnel boring methods can no longer meet the actual needs.In order to solve the problems of low efficiency,high labor intensity,slow tunnel boring speed,bad working environment and poor safety in traditional tunnel boring,on the basis of analyzing the development and application of coal roadway tunnel boring equipment at home and abroad,complete equipment for high-speed tunnel boring and bolting machines was developed by using the integrated technology of tunnel boring and bolting.The complete equipment for high-speed tunnel boring and bolting machines has the functions of tunnel boring and bolting synchronization,once-tunneling,negative pressure dust removal,digital guidance,independent cutting feed,digital cutting,safety monitoring and data interaction,which has the advantages of safety in use,reliability and efficiency.
文摘In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.
文摘A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter.
文摘Through analysis of the basic transformation of a typical body,the error transformations of the position vector and the displacement vector are employed,a general model for positioning errors of NC machine tools by using kinematics of the multi body system is discussed.By means of 8031 single chip system,intelligent error compensation controller has been developed.The results of experiments on XH714 machining center show that the positioning accuracy is enhanced effectively by more than 50%.
文摘Parallel kinematics machine (PKM) is advantageous over the serial machine tools in processing the complex-surface products. A manufacturing service system for PKM is developed to provide the services of the complex-surface machining for potential geographically-dispersed manufacturing enterprises. In order to easily in- tegrate the external system, Web services are used to encapsulate post-processing functions of PKM legacy sys- tems, including compilation, workspace calculation, interfere calibration, and kinematics transformation. A ser- vice-oriented architecture(SOA) is proposed for the cooperative work between the PKM system and its client. The workflow and the function module of this manufacturing service system are presented. An example shows that as a result of SOA and loose coupling, such a Web service-based manufacturing service system is easier to in- tegrate and interoperate with its client. Meanwhile, the system decreases the manufacturing cost and improves the efficiency than its former kind of distributed system.
文摘With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that the frame is the main contributor.Then,influences of constraints,strut length and working ways of the main module have also been investigated.It can be concluded that when one of the main planes of the frame without linear drive unit is constrained,the largest whole stiffness can be acquired.And,the stiffness is much better when the main module is used in a vertical machine tool instead of a horizontal one.Finally,the principle of stiffness variation is summarized when the mobile platform reaches various positions within its working space and when various loads are applied.These achievements have provided critical instructions for the design of the main module for parallel machine tools.
基金supported by National Natural Science Foundation of China (Grant No. 51075147)
文摘At present, the inner cutters of a full face rock tunnel boring machine (TBM) and transition cutter edge angles are designed on the basis of indentation test or linear grooving test. The inner and outer edge angles of disc cutters are characterized as symmetric to each other with respect to the cutter edge plane. This design has some practical defects, such as severe eccentric wear and tipping, etc. In this paper, the current design theory of disc cutter edge angle is analyzed, and the characteristics of the rock-breaking movement of disc cutters are studied. The researching results show that the rotational motion of disc cutters with the cutterhead gives rise to the difference between the interactions of inner rock and outer rock with the contact area of disc cutters, with shearing and extrusion on the inner rock and attrition on the outer rock. The wear of disc cutters at the contact area is unbalanced, among which the wear in the largest normal stress area is most apparent. Therefore, a three-dimensional model theory of rock breaking and an edge angle design theory of transition disc cutter are proposed to overcome the flaws of the currently used TBM cutter heads, such as short life span, camber wearing, tipping. And a corresponding equation is established. With reference to a specific construction case, the edge angle of the transition disc cutter has been designed based on the theory. The application of TBM in some practical project proves that the theory has obvious advantages in enhancing disc cutter life, decreasing replacement frequency, and making economic benefits. The proposed research provides a theoretical basis for the design of TBM three-dimensional disc cutters whose rock-breaking operation time can be effectively increased.
基金Supported by National Natural Science Foundation of China(Grant No.11290144)Innovation Foundation of BUAA for Ph D Graduates,China
文摘Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.
基金Supported by National Natural Science Foundation of China (Grant No.51075147)National Hi-tech Research and Development Program of China (863 Program,Grant No.2012AA041803)
文摘Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians’ experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters’ life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters.
基金Supported by Research on Reliability Assessment and Test Methods of Heavy Machine Tools,China(State Key Science&Technology Project High-grade NC Machine Tools and Basic Manufacturing Equipment,Grant No.2014ZX04014-011)Reliability Modeling of Machining Centers Considering the Cutting Loads,China(Science&Technology Development Plan for Jilin Province,Grant No.3D513S292414)Graduate Innovation Fund of Jilin University,China(Grant No.2014053)
文摘Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread engineering applications. Thus, a reliability modeling and assessment solution aimed at small-sample data of numerical control(NC) machine tools is proposed on the basis of Bayes theories. An expert-judgment process of fusing multi-source prior information is developed to obtain the Weibull parameters' prior distributions and reduce the subjective bias of usual expert-judgment methods. The grid approximation method is applied to two-parameter Weibull distribution to derive the formulas for the parameters' posterior distributions and solve the calculation difficulty of high-dimensional integration. The method is then applied to the real data of a type of NC machine tool to implement a reliability assessment and obtain the mean time between failures(MTBF). The relative error of the proposed method is 5.8020×10-4 compared with the MTBF obtained by the MCMC algorithm. This result indicates that the proposed method is as accurate as MCMC. The newly developed solution for reliability modeling and assessment of NC machine tools under small-sample data is easy, practical, and highly suitable for widespread application in the engineering field; in addition, the solution does not reduce accuracy.
基金supported by the National Natural Science Foundation of China(Grant No.51475163)the National Hightech R&D Program of China(Grant No.2012AA041803)
文摘Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the analyses of cutter motion in the rock breaking process and trajectory of rock breaking point on the cutter edge in rocks. The analytical expressions of the length of face along which the breaking point moves and the length of spiral trajectory of the maximum penetration point are derived. Through observation of rock breaking process of disc cutters as well as analysis of disc rock interaction, the following concepts are proposed: the arc length theory of predicting wear extent of inner and center cutters, and the spiral theory of predicting wear extent of gage and transition cutters. Data obtained from5621 m-long Qinling tunnel reveal that among 39 disc cutters, the relative errors between cumulatively predicted and measured wear values for nine cutters are larger than 20%, while approximately 76.9% of total cutters have the relative errors less than 20%. The proposed method could offer a new attempt to predict the disc cutter's wear extent and changing time.