In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale G...In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases.展开更多
The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometri...The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km.展开更多
Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The ...Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The variation characteristics of GWs during SSWs have always been an important issue.Using temperature data from January to March in 2014−2016,provided by the Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)mission,we have analyzed global GW activity at 15−40 km in the Northern Hemisphere during SSW events.During the SSWs that we studied,the stratospheric temperature rose in one or two longitudinal regions in the Northern Hemisphere;the areas affected extended to the east of 90°W.During these SSWs,the potential energy density(E_(p)of GWs expanded and covered a larger range of longitude and altitude,exhibiting an eastward and downward extension.The E_(p)usually increased,while partially filtered by the eastward zonal winds.When zonal winds weakened or turned westward,E_(p)began to strengthen.After SSWs,the E_(p)usually decreased.These observations can serve as a reference for analyzing the interaction mechanism between SSWs and GWs in future work.展开更多
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb...To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.展开更多
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
The gravity gradient anomaly zone is produced due to density diff erences on both sides of a fault.Tracking of extreme points enables the characterization and description of fault locations.However,for some deep-seate...The gravity gradient anomaly zone is produced due to density diff erences on both sides of a fault.Tracking of extreme points enables the characterization and description of fault locations.However,for some deep-seated faults with large burial depths and secondary faults with moderate burial depths,the gravity horizontal total gradient anomaly must be enhanced using the concept of dip angle to strengthen the weak anomaly extraction for the identification of more fault information.This method was used to predict five regional deep-seated faults and six secondary faults in the Miquan region.The fracture plane extends in a near north-northeast direction;that is,it mostly expands out of the study area,spreads out in a trumpet shape to the southwest,and converges to the northeast.Fracture activity is an important factor in controlling structural units or local structures.The Miquan block is located in a complex structural zone in front of the Bogeda Mountains,which have very complex surface and subsurface geological conditions,and seismic data are unideal.Therefore,fracture prediction results using gravity data are important in-depth understanding of the structure in this area.展开更多
It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals ex...It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h.展开更多
This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this g...This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings.展开更多
Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, howeve...Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, however, low-frequency GPR survey to investigate fault-related depositional systems at greater depths. The Quinta-Cassino area in the Rio Grande do Sul Coastal Plain (RGSCP, Brazil) shows a wide strandplain that is made off by very long, continuous, and linear geomorphic features (beach ridges). This strandplain extends for ~70 km southward. The beach ridges show low-angle truncations against the Quinta escarpment, and also truncations in the strandplain. The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;previous model assumes that no deformational episode occurred in RGSCP. The geophysical and geological surveys carried out in this area showed the existence of listric fault controlling the beach ridges in the escarpments and hanging-wall blocks. The radargrams could distinguish Pleistocene basement unit anticlockwise rotation, thickening of beach ridges radarfacies close to listric normal faults, and horst structures. These deformational features indicate that the extensional zone of a large-scale gravity-driven structure controlled the mechanical subsidence, the Holocene sedimentation and its stratigraphic and geomorphic features in the Quinta-Cassino area to build up an asymmetric delta. The results point to a new approach in dealing with RGSCP Holocene evolution.展开更多
Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the...Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results.展开更多
This article describes an extension of the theory of vortices to electromagnetic types with a start point from known fluid systems. From this, properties of gravity-generating objects (particles and black holes) can b...This article describes an extension of the theory of vortices to electromagnetic types with a start point from known fluid systems. From this, properties of gravity-generating objects (particles and black holes) can be derived, which can also describe their possible interior. This also leads to questions about stability, which are then addressed and ultimately lead to considerations of black holes and their possible internal structure. The results fit into the observable areas and can also be directly verified because they were analytically calculated in SI units.展开更多
The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite da...The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite data can be used to detect gravity changes associated with large earthquakes.However,previous GRACE satellite-based seismic gravity-change studies have focused more on coseismic gravity changes than on preseismic gravity changes.Moreover,the noise of the north–south stripe in GRACE data is difficult to eliminate,thereby resulting in the loss of some gravity information related to tectonic activities.To explore the preseismic gravity anomalies in a more refined way,we first propose a method of characterizing gravity variation based on the maximum shear strain of gravity,inspired by the concept of crustal strain.The offset index method is then adopted to describe the gravity anomalies,and the spatial and temporal characteristics of gravity anomalies before earthquakes are analyzed at the scales of the fault zone and plate,respectively.In this work,experiments are carried out on the Tibetan Plateau and its surrounding areas,and the following findings are obtained:First,from the observation scale of the fault zone,we detect the occurrence of large-area gravity anomalies near the epicenter,oftentimes about half a year before an earthquake,and these anomalies were distributed along the fault zone.Second,from the observation scale of the plate,we find that when an earthquake occurred on the Tibetan Plateau,a large number of gravity anomalies also occurred at the boundary of the Tibetan Plateau and the Indian Plate.Moreover,the aforementioned experiments confirm that the proposed method can successfully capture the preseismic gravity anomalies of large earthquakes with a magnitude of less than 8,which suggests a new idea for the application of gravity satellite data to earthquake research.展开更多
The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of verti...The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.展开更多
This work is a kind of thought experiment aimed at answering the question: what might a theory look like in which time and space (spacetime) are not fundamental? The article formulates theoretical frameworks that intr...This work is a kind of thought experiment aimed at answering the question: what might a theory look like in which time and space (spacetime) are not fundamental? The article formulates theoretical frameworks that introduce the number of spacetime dimensions, the principle of equivalence of mass, and the value of the gravitational constant not as empirically given data, but as results of theoretical deduction. This analysis opens up potential connections between gravitational and electrostatic interactions, proposing a new approach to traditional physical assumptions. The theory is presented in a preliminary form, intended to inspire possible further research. The final part of the paper proposes experiments to verify these ideas.展开更多
A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for det...A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.展开更多
Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate ...Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.展开更多
Internal gravity waves(IGWs)are critical in driving Martian atmospheric motion and phenomena.This study investigates Martian IGWs by using high-resolution data from China’s Tianwen-1 mission and the National Aeronaut...Internal gravity waves(IGWs)are critical in driving Martian atmospheric motion and phenomena.This study investigates Martian IGWs by using high-resolution data from China’s Tianwen-1 mission and the National Aeronautics and Space Administration’s Mars Global Surveyor(MGS)by the radio occultation(RO)technique.Key IGW parameters,such as vertical and horizontal wavelengths,intrinsic frequency,and energy density,are extracted based on vertical temperature profiles from the Martian surface to~50 km altitude.Data reveal that the Martian IGWs are predominantly small-scale waves,with vertical wavelengths between 6 and 13 km and horizontal wavelengths extending to thousands of kilometers.These waves propagate almost vertically and exhibit low intrinsic frequencies close to the inertial frequency,with the characteristic of low-frequency inertial IGWs.Tianwen-1 data indicate stronger IGW activity,higher energy density,and less dissipation than MGS data in the northern hemisphere.Moreover,MGS data in the southern hemisphere show higher buoyancy frequencies and lower vertical wavelengths,suggesting more stable atmospheric conditions conducive to IGW propagation.These extracted IGW characteristics can enhance our understanding of the atmospheric dynamics on Mars and contribute valuable information for parameterization in global circulation models.展开更多
Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambiq...Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambique's continental margin is considered of great significance to rebuild Gondwana land and understand its movement mode. Along these lines, in this work, the initial Moho was fit using the known Moho depth from reflection seismic profiles, and a 3D multi-point constrained gravity inversion was carried out. Thus, highaccuracy Moho depth and crustal thickness in the study area were acquired. According to the crustal structure distribution based on the inversion results, the continental crust at the narrowest position of the Mozambique Channel was detected. According to the analysis of the crustal thickness, the Mozambique ridge is generally oceanic crust and the COB of the whole Mozambique continental margin is divided.展开更多
Naturally fractured rocks contain most of the world's petroleum reserves.This significant amount of oil can be recovered efficiently by gas assisted gravity drainage(GAGD).Although,GAGD is known as one of the most...Naturally fractured rocks contain most of the world's petroleum reserves.This significant amount of oil can be recovered efficiently by gas assisted gravity drainage(GAGD).Although,GAGD is known as one of the most effective recovery methods in reservoir engineering,the lack of available simulation and mathematical models is considerable in these kinds of reservoirs.The main goal of this study is to provide efficient and accurate methods for predicting the GAGD recovery factor using data driven techniques.The proposed models are developed to relate GAGD recovery factor to the various parameters including model height,matrix porosity and permeability,fracture porosity and permeability,dip angle,viscosity and density of wet and non-wet phases,injection rate,and production time.In this investigation,by considering the effective parameters on GAGD recovery factor,three different efficient,smart,and fast models including artificial neural network(ANN),least square support vector machine(LSSVM),and multi-gene genetic programming(MGGP)are developed and compared in both fractured and homogenous porous media.Buckinghamπtheorem is also used to generate dimensionless numbers to reduce the number of input and output parameters.The efficiency of the proposed models is examined through statistical analysis of R-squared,RMSE,MSE,ARE,and AARE.Moreover,the performance of the generated MGGP correlation is compared to the traditional models.Results demonstrate that the ANN model predicts the GAGD recovery factor more accurately than the LSSVM and MGGP models.The maximum R^(2)of 0.9677 and minimum RMSE of 0.0520 values are obtained by the ANN model.Although the MGGP model has the lowest performance among the other used models(the R2 of 0.896 and the RMSE of 0.0846),the proposed MGGP correlation can predict the GAGD recovery factor in fractured and homogenous reservoirs with high accuracy and reliability compared to the traditional models.Results reveal that the employed models can easily predict GAGD recovery factor without requiring complicate governing equations or running complex and time-consuming simulation models.The approach of this research work improves our understanding about the most significant parameters on GAGD recovery and helps to optimize the stages of the process,and make appropriate economic decisions.展开更多
基金supported by the Project of Stable Support for Youth Teams in Basic Research Field,Chinese Academy of Sciences(CASGrant No.YSBR-018)+2 种基金the B-type Strategic Priority Program of CAS(Grant No.XDB41000000)the National Natural Science Foundation of China(Grant No.42204165)the National Key Research and Development Program(Grant No.2022YFF0504400).
文摘In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases.
基金supported by the Fundamental Research Funds for the Central Universities,CHD(NO.300102263205 and NO.300102264916)the West Light Cross-Disciplinary Innovation team of Chinese Academy of Sciences(NO.E1294301).supported by the Fundamental Research Funds for the Central Universities,CHD(NO.300102263205 and NO.300102264916)the West Light Cross-Disciplinary Innovation team of Chinese Academy of Sciences(NO.E1294301).
文摘The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km.
基金the National Science Foundation of Hunan Province,China(Grant No.2022JJ40471)the Research Foundation of the Education Bureau of Hunan Province,China(Grant No.22B0345)the Key Laboratory of Geospace Envi-ronment,Chinese Academy of Sciences,University of Science&Technology of China(Grant No.GE2023-01).
文摘Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The variation characteristics of GWs during SSWs have always been an important issue.Using temperature data from January to March in 2014−2016,provided by the Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)mission,we have analyzed global GW activity at 15−40 km in the Northern Hemisphere during SSW events.During the SSWs that we studied,the stratospheric temperature rose in one or two longitudinal regions in the Northern Hemisphere;the areas affected extended to the east of 90°W.During these SSWs,the potential energy density(E_(p)of GWs expanded and covered a larger range of longitude and altitude,exhibiting an eastward and downward extension.The E_(p)usually increased,while partially filtered by the eastward zonal winds.When zonal winds weakened or turned westward,E_(p)began to strengthen.After SSWs,the E_(p)usually decreased.These observations can serve as a reference for analyzing the interaction mechanism between SSWs and GWs in future work.
基金Supported by the National Natural Science Foundation of China(42202176)CNPC-Southwest University of Petroleum Innovation Consortium Cooperation Project(2020CX050103).
文摘To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
基金supported by the Sinopec Science and Technology Research Project(No.P22161 and No.24029).
文摘The gravity gradient anomaly zone is produced due to density diff erences on both sides of a fault.Tracking of extreme points enables the characterization and description of fault locations.However,for some deep-seated faults with large burial depths and secondary faults with moderate burial depths,the gravity horizontal total gradient anomaly must be enhanced using the concept of dip angle to strengthen the weak anomaly extraction for the identification of more fault information.This method was used to predict five regional deep-seated faults and six secondary faults in the Miquan region.The fracture plane extends in a near north-northeast direction;that is,it mostly expands out of the study area,spreads out in a trumpet shape to the southwest,and converges to the northeast.Fracture activity is an important factor in controlling structural units or local structures.The Miquan block is located in a complex structural zone in front of the Bogeda Mountains,which have very complex surface and subsurface geological conditions,and seismic data are unideal.Therefore,fracture prediction results using gravity data are important in-depth understanding of the structure in this area.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the National Natural Science Foundation of China(Grant No.42174101,41974023)+1 种基金the Open Fund of Hubei Luojia Laboratory(Grant No.S22H640201)(Germany)The Offshore International Science and Technology Cooperation Center of Frontier Technology of Geodesy。
文摘It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h.
基金funded by the National Natural Science Foundation of China (Grant No. 11975145)
文摘This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings.
文摘Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, however, low-frequency GPR survey to investigate fault-related depositional systems at greater depths. The Quinta-Cassino area in the Rio Grande do Sul Coastal Plain (RGSCP, Brazil) shows a wide strandplain that is made off by very long, continuous, and linear geomorphic features (beach ridges). This strandplain extends for ~70 km southward. The beach ridges show low-angle truncations against the Quinta escarpment, and also truncations in the strandplain. The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;previous model assumes that no deformational episode occurred in RGSCP. The geophysical and geological surveys carried out in this area showed the existence of listric fault controlling the beach ridges in the escarpments and hanging-wall blocks. The radargrams could distinguish Pleistocene basement unit anticlockwise rotation, thickening of beach ridges radarfacies close to listric normal faults, and horst structures. These deformational features indicate that the extensional zone of a large-scale gravity-driven structure controlled the mechanical subsidence, the Holocene sedimentation and its stratigraphic and geomorphic features in the Quinta-Cassino area to build up an asymmetric delta. The results point to a new approach in dealing with RGSCP Holocene evolution.
基金The National Key R&D Program of China under contract Nos 2022YFC3003800,2020YFC1521700 and 2020YFC1521705the National Natural Science Foundation of China under contract No.41830540+3 种基金the Open Fund of the East China Coastal Field Scientific Observation and Research Station of the Ministry of Natural Resources under contract No.OR-SECCZ2022104the Deep Blue Project of Shanghai Jiao Tong University under contract No.SL2020ZD204the Special Funding Project for the Basic Scientific Research Operation Expenses of the Central Government-Level Research Institutes of Public Interest of China under contract No.SZ2102the Zhejiang Provincial Project under contract No.330000210130313013006。
文摘Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results.
文摘This article describes an extension of the theory of vortices to electromagnetic types with a start point from known fluid systems. From this, properties of gravity-generating objects (particles and black holes) can be derived, which can also describe their possible interior. This also leads to questions about stability, which are then addressed and ultimately lead to considerations of black holes and their possible internal structure. The results fit into the observable areas and can also be directly verified because they were analytically calculated in SI units.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509202)the National Natural Science Foundation of China(Grant Nos.41772350,61371189,and 41701513).
文摘The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite data can be used to detect gravity changes associated with large earthquakes.However,previous GRACE satellite-based seismic gravity-change studies have focused more on coseismic gravity changes than on preseismic gravity changes.Moreover,the noise of the north–south stripe in GRACE data is difficult to eliminate,thereby resulting in the loss of some gravity information related to tectonic activities.To explore the preseismic gravity anomalies in a more refined way,we first propose a method of characterizing gravity variation based on the maximum shear strain of gravity,inspired by the concept of crustal strain.The offset index method is then adopted to describe the gravity anomalies,and the spatial and temporal characteristics of gravity anomalies before earthquakes are analyzed at the scales of the fault zone and plate,respectively.In this work,experiments are carried out on the Tibetan Plateau and its surrounding areas,and the following findings are obtained:First,from the observation scale of the fault zone,we detect the occurrence of large-area gravity anomalies near the epicenter,oftentimes about half a year before an earthquake,and these anomalies were distributed along the fault zone.Second,from the observation scale of the plate,we find that when an earthquake occurred on the Tibetan Plateau,a large number of gravity anomalies also occurred at the boundary of the Tibetan Plateau and the Indian Plate.Moreover,the aforementioned experiments confirm that the proposed method can successfully capture the preseismic gravity anomalies of large earthquakes with a magnitude of less than 8,which suggests a new idea for the application of gravity satellite data to earthquake research.
基金funded jointly by the National Nature Science Funds of China(No.42274010)the Fundamental Research Funds for the Central Universities(Nos.2023000540,2023000407).
文摘The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.
文摘This work is a kind of thought experiment aimed at answering the question: what might a theory look like in which time and space (spacetime) are not fundamental? The article formulates theoretical frameworks that introduce the number of spacetime dimensions, the principle of equivalence of mass, and the value of the gravitational constant not as empirically given data, but as results of theoretical deduction. This analysis opens up potential connections between gravitational and electrostatic interactions, proposing a new approach to traditional physical assumptions. The theory is presented in a preliminary form, intended to inspire possible further research. The final part of the paper proposes experiments to verify these ideas.
文摘A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.
文摘Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.
基金National Natural Science Foundation of China(Grant Nos.42174192,12241101,and 91952111).
文摘Internal gravity waves(IGWs)are critical in driving Martian atmospheric motion and phenomena.This study investigates Martian IGWs by using high-resolution data from China’s Tianwen-1 mission and the National Aeronautics and Space Administration’s Mars Global Surveyor(MGS)by the radio occultation(RO)technique.Key IGW parameters,such as vertical and horizontal wavelengths,intrinsic frequency,and energy density,are extracted based on vertical temperature profiles from the Martian surface to~50 km altitude.Data reveal that the Martian IGWs are predominantly small-scale waves,with vertical wavelengths between 6 and 13 km and horizontal wavelengths extending to thousands of kilometers.These waves propagate almost vertically and exhibit low intrinsic frequencies close to the inertial frequency,with the characteristic of low-frequency inertial IGWs.Tianwen-1 data indicate stronger IGW activity,higher energy density,and less dissipation than MGS data in the northern hemisphere.Moreover,MGS data in the southern hemisphere show higher buoyancy frequencies and lower vertical wavelengths,suggesting more stable atmospheric conditions conducive to IGW propagation.These extracted IGW characteristics can enhance our understanding of the atmospheric dynamics on Mars and contribute valuable information for parameterization in global circulation models.
基金The National Natural Science Foundation of China under contract No. 42076078China–Mozambique Joint Cruise under contract No. GASI-01-DLJHJ-CM。
文摘Mozambique's continental margin in East Africa was formed during the break-off stage of the east and west Gondwana lands. Studying the geological structure and division of continent-ocean boundary(COB) in Mozambique's continental margin is considered of great significance to rebuild Gondwana land and understand its movement mode. Along these lines, in this work, the initial Moho was fit using the known Moho depth from reflection seismic profiles, and a 3D multi-point constrained gravity inversion was carried out. Thus, highaccuracy Moho depth and crustal thickness in the study area were acquired. According to the crustal structure distribution based on the inversion results, the continental crust at the narrowest position of the Mozambique Channel was detected. According to the analysis of the crustal thickness, the Mozambique ridge is generally oceanic crust and the COB of the whole Mozambique continental margin is divided.
文摘Naturally fractured rocks contain most of the world's petroleum reserves.This significant amount of oil can be recovered efficiently by gas assisted gravity drainage(GAGD).Although,GAGD is known as one of the most effective recovery methods in reservoir engineering,the lack of available simulation and mathematical models is considerable in these kinds of reservoirs.The main goal of this study is to provide efficient and accurate methods for predicting the GAGD recovery factor using data driven techniques.The proposed models are developed to relate GAGD recovery factor to the various parameters including model height,matrix porosity and permeability,fracture porosity and permeability,dip angle,viscosity and density of wet and non-wet phases,injection rate,and production time.In this investigation,by considering the effective parameters on GAGD recovery factor,three different efficient,smart,and fast models including artificial neural network(ANN),least square support vector machine(LSSVM),and multi-gene genetic programming(MGGP)are developed and compared in both fractured and homogenous porous media.Buckinghamπtheorem is also used to generate dimensionless numbers to reduce the number of input and output parameters.The efficiency of the proposed models is examined through statistical analysis of R-squared,RMSE,MSE,ARE,and AARE.Moreover,the performance of the generated MGGP correlation is compared to the traditional models.Results demonstrate that the ANN model predicts the GAGD recovery factor more accurately than the LSSVM and MGGP models.The maximum R^(2)of 0.9677 and minimum RMSE of 0.0520 values are obtained by the ANN model.Although the MGGP model has the lowest performance among the other used models(the R2 of 0.896 and the RMSE of 0.0846),the proposed MGGP correlation can predict the GAGD recovery factor in fractured and homogenous reservoirs with high accuracy and reliability compared to the traditional models.Results reveal that the employed models can easily predict GAGD recovery factor without requiring complicate governing equations or running complex and time-consuming simulation models.The approach of this research work improves our understanding about the most significant parameters on GAGD recovery and helps to optimize the stages of the process,and make appropriate economic decisions.