Reversible boronate-catechol linkage was widely used to construct two-dimensional coatings and threedimensional nanostructures or hydrogels.The construction of these functional materials usually requires the pre-synth...Reversible boronate-catechol linkage was widely used to construct two-dimensional coatings and threedimensional nanostructures or hydrogels.The construction of these functional materials usually requires the pre-synthesis of macro molecular building blocks,and direct gelation between natural polyphenols and small molecule boranic acids is yet to be investigated.In this study,we fabricated a family of allsmall-molecule dynamic covalent gels consisting of tannic acid and boronic acids.Transparent and thixotropic gels were formed by boronate affinity towards catechol groups abundant on natural polyphenols.The gels showed multi-responsiveness,such as acid-,base-,reduction-and oxidantsensitive depending on the used boronic acid building blocks.The chemistry for gel formation and stimuli-responsiveness was characterized by11B NMR spectroscopy.The multi-stimuli responsiveness,green processing and facile modular design make the boronic acid-tannic acid gels promising candidates for the development of smart soft materials.展开更多
基金supported by the National Natural Science Foundation of China(No.21725402)the Shanghai Municipal Science and Technology Commission(No.17XD1401600)。
文摘Reversible boronate-catechol linkage was widely used to construct two-dimensional coatings and threedimensional nanostructures or hydrogels.The construction of these functional materials usually requires the pre-synthesis of macro molecular building blocks,and direct gelation between natural polyphenols and small molecule boranic acids is yet to be investigated.In this study,we fabricated a family of allsmall-molecule dynamic covalent gels consisting of tannic acid and boronic acids.Transparent and thixotropic gels were formed by boronate affinity towards catechol groups abundant on natural polyphenols.The gels showed multi-responsiveness,such as acid-,base-,reduction-and oxidantsensitive depending on the used boronic acid building blocks.The chemistry for gel formation and stimuli-responsiveness was characterized by11B NMR spectroscopy.The multi-stimuli responsiveness,green processing and facile modular design make the boronic acid-tannic acid gels promising candidates for the development of smart soft materials.