The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the K...The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.展开更多
We investigate dynamics of Bose–Einstein condensates(BECs) in a single-well potential using the mode-coupling method. Symmetry is shown to play a key role in the coupling between modes. A proper mode-coupling theory ...We investigate dynamics of Bose–Einstein condensates(BECs) in a single-well potential using the mode-coupling method. Symmetry is shown to play a key role in the coupling between modes. A proper mode-coupling theory of the dynamics of BECs in a single-well potential should include at least four modes. In this context, the ideal BEC system can be decomposed into two independent subsystems when the coupling is caused by external potential perturbation and is linear. The mode dynamics of non-ideal BECs with interaction shows rich behavior. The combination of nonlinear coupling and initial condition leads to the different regimes of mode dynamics, from regularity to non-regularity, which also indicates a change of the dependence of coupling on the symmetry of modes.展开更多
We use the methodology of A. D. Linde to model the probability of obtaining a cosmological constant which is in turn affected by scaling arguments for a Bose Einstein gravitational condensate as given by Chavanis, in ...We use the methodology of A. D. Linde to model the probability of obtaining a cosmological constant which is in turn affected by scaling arguments for a Bose Einstein gravitational condensate as given by Chavanis, in 2015. The net result, is that the scaling argument so provided allows for a gravitational constant commensurate with the size of the Universe, using arguments which appear to be simple but which give, if one has the conditions for modeling the Universe as a “black hole” virtually 100 % chance for the cosmological constant arising.展开更多
We model the universe as a white hole, and in the process we perform detailed analysis of the enthalpy equation of the modified white hole, and we get a much detailed picture of when and how did;quantum gravity (cosmo...We model the universe as a white hole, and in the process we perform detailed analysis of the enthalpy equation of the modified white hole, and we get a much detailed picture of when and how did;quantum gravity (cosmology) phase, inflationary phase, and the acceleration phase of the universe happened. We determine the field equations of the modified white hole and evolve the scale factor and compare the evolution to the thermodynamic properties of the universe. We also illustrate that the strong energy condition is violated, but both the null energy condition and the strong cosmic censorship are not violated. Lastly, we couple the enthalpy to the Bose-Einstein condensate at extremely low entropy at the quantum gravity (cosmology) regime. Thereafter, we determine the unstable condition of the Bose-Einstein quantum equation which we interpret as the moment when the big bang occurred.展开更多
This paper reports an experiment of creating Bose-Einstein condensate (BEC) on an atom chip. The chip-based Z-wire current with a homogeneous bias magnetic field creates a tight magnetic trap, which allows for a fas...This paper reports an experiment of creating Bose-Einstein condensate (BEC) on an atom chip. The chip-based Z-wire current with a homogeneous bias magnetic field creates a tight magnetic trap, which allows for a fast production of BEC. After a 4.17-s forced radio frequency evaporative cooling, a condensate with about 3000 atoms appears. The transition temperature is about 300 nK. This compact system is quite robust, allowing for versatile extensions and further studying of BEC.展开更多
The BEG of charged pions is investigated in the framework of O(4) linear sigma model. By using Cornwall- Jackiw-Tomboufis formalism, we have derived the gap equations for the effective masses of the mesons at finite...The BEG of charged pions is investigated in the framework of O(4) linear sigma model. By using Cornwall- Jackiw-Tomboufis formalism, we have derived the gap equations for the effective masses of the mesons at finite temperature and finite isospin density. The critical temperature and phase diagram of BEG are discussed in the non-chiral limit at Hartree approximation.展开更多
We investigate the energy-level shift of a hydrogen atom in a two-dimensional optical microcavity, where there exists a Bose-Einstein condensation of photons. It is found that below the critical temperature Tc, the en...We investigate the energy-level shift of a hydrogen atom in a two-dimensional optical microcavity, where there exists a Bose-Einstein condensation of photons. It is found that below the critical temperature Tc, the energy-level shift of the bound electron is dependent on temperature, and it is a monotonically increasing function of the absolute temperature T. Especially, at the absolute zero temperature, the energy-level shift entirely comes from the Lamb shift, and the atom can be treated approximately, that is, in vacuum.展开更多
The ground-state properties of a system with a small number of interacting bosons over a wide range of densities are investigated. The system is confined in a two-dimensional isotropic harmonic trap, where the interac...The ground-state properties of a system with a small number of interacting bosons over a wide range of densities are investigated. The system is confined in a two-dimensional isotropic harmonic trap, where the interaction between bosons is treated as a hard-core potential. By using variational Monte Carlo method, we diagonalize the one-body density matrix of the system to obtain the ground-state energy, condensate wavefunction and the condensate fraction. We find that in the dilute limit the depletion of central condensate in the 2D system is larger than in a 3D system for the same interaction strength; however as the density increases, the depletion at the centre of 2D trap will be equal to or even lower than that at the centre of 3D trap, which is in agreement with the anticipated in Thomas-Fermi approximation. In addition, in the 2D system the total condensate depletion is still larger than in a 3D system for the same scattering length.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12065022 and 12147213)。
文摘The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.
文摘We investigate dynamics of Bose–Einstein condensates(BECs) in a single-well potential using the mode-coupling method. Symmetry is shown to play a key role in the coupling between modes. A proper mode-coupling theory of the dynamics of BECs in a single-well potential should include at least four modes. In this context, the ideal BEC system can be decomposed into two independent subsystems when the coupling is caused by external potential perturbation and is linear. The mode dynamics of non-ideal BECs with interaction shows rich behavior. The combination of nonlinear coupling and initial condition leads to the different regimes of mode dynamics, from regularity to non-regularity, which also indicates a change of the dependence of coupling on the symmetry of modes.
文摘We use the methodology of A. D. Linde to model the probability of obtaining a cosmological constant which is in turn affected by scaling arguments for a Bose Einstein gravitational condensate as given by Chavanis, in 2015. The net result, is that the scaling argument so provided allows for a gravitational constant commensurate with the size of the Universe, using arguments which appear to be simple but which give, if one has the conditions for modeling the Universe as a “black hole” virtually 100 % chance for the cosmological constant arising.
文摘We model the universe as a white hole, and in the process we perform detailed analysis of the enthalpy equation of the modified white hole, and we get a much detailed picture of when and how did;quantum gravity (cosmology) phase, inflationary phase, and the acceleration phase of the universe happened. We determine the field equations of the modified white hole and evolve the scale factor and compare the evolution to the thermodynamic properties of the universe. We also illustrate that the strong energy condition is violated, but both the null energy condition and the strong cosmic censorship are not violated. Lastly, we couple the enthalpy to the Bose-Einstein condensate at extremely low entropy at the quantum gravity (cosmology) regime. Thereafter, we determine the unstable condition of the Bose-Einstein quantum equation which we interpret as the moment when the big bang occurred.
基金Project supported by the National Basic Research Program of China (Grant No 2006CB921202)the Science Foundation of the Ministry of Science and Technology of China (Grant No 2006CB921A03)
文摘This paper reports an experiment of creating Bose-Einstein condensate (BEC) on an atom chip. The chip-based Z-wire current with a homogeneous bias magnetic field creates a tight magnetic trap, which allows for a fast production of BEC. After a 4.17-s forced radio frequency evaporative cooling, a condensate with about 3000 atoms appears. The transition temperature is about 300 nK. This compact system is quite robust, allowing for versatile extensions and further studying of BEC.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos.10547112 and 10675052
文摘The BEG of charged pions is investigated in the framework of O(4) linear sigma model. By using Cornwall- Jackiw-Tomboufis formalism, we have derived the gap equations for the effective masses of the mesons at finite temperature and finite isospin density. The critical temperature and phase diagram of BEG are discussed in the non-chiral limit at Hartree approximation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10174024 and 10474025)
文摘We investigate the energy-level shift of a hydrogen atom in a two-dimensional optical microcavity, where there exists a Bose-Einstein condensation of photons. It is found that below the critical temperature Tc, the energy-level shift of the bound electron is dependent on temperature, and it is a monotonically increasing function of the absolute temperature T. Especially, at the absolute zero temperature, the energy-level shift entirely comes from the Lamb shift, and the atom can be treated approximately, that is, in vacuum.
文摘The ground-state properties of a system with a small number of interacting bosons over a wide range of densities are investigated. The system is confined in a two-dimensional isotropic harmonic trap, where the interaction between bosons is treated as a hard-core potential. By using variational Monte Carlo method, we diagonalize the one-body density matrix of the system to obtain the ground-state energy, condensate wavefunction and the condensate fraction. We find that in the dilute limit the depletion of central condensate in the 2D system is larger than in a 3D system for the same interaction strength; however as the density increases, the depletion at the centre of 2D trap will be equal to or even lower than that at the centre of 3D trap, which is in agreement with the anticipated in Thomas-Fermi approximation. In addition, in the 2D system the total condensate depletion is still larger than in a 3D system for the same scattering length.