The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the K...The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.展开更多
We present several families of exact solutions to a system of coupled nonlinear Schrodinger equations. The model describes a binary mixture of two Bose-Einstein condensates in a magnetic trap potential. Using a mappin...We present several families of exact solutions to a system of coupled nonlinear Schrodinger equations. The model describes a binary mixture of two Bose-Einstein condensates in a magnetic trap potential. Using a mapping deformation method, we find exact periodic wave and soliton solutions, including bright and dark soliton pairs.展开更多
An improved nonlinear Schrodinger equation different from usual one of spinor Bose-Einstein condensates (BECs) in an optical lattice are obtained by taking into account a nonlinear term in the equation of motion for...An improved nonlinear Schrodinger equation different from usual one of spinor Bose-Einstein condensates (BECs) in an optical lattice are obtained by taking into account a nonlinear term in the equation of motion for probability amplitude of spins carefully. The elliptic function wave solutions of the model are found under specific boundary condition, for example, the two ends of the atomic chain are fixed. In the case of limit the elliptic function wave solutions are reduced into spin-wave-like or solitons.展开更多
The stable nonlinear transport of the Bose-Einstein condensates through a double barrier potential in a waveguide is studied. By using the direct perturbation method we have obtained a perturbed solution of Cross-Pita...The stable nonlinear transport of the Bose-Einstein condensates through a double barrier potential in a waveguide is studied. By using the direct perturbation method we have obtained a perturbed solution of Cross-Pitaevskii equation. Theoretical analysis reveals that this perturbed solution is a stable periodic solution, which shows that the transport of Bose-Einstein condensed atoms in this system is a stable nonlinear transport. The corresponding numerical results are in good agreement with the theoretical analytical results.展开更多
The stability of Bose Einstein condensates (BECs) loaded into a two-dimensional shallow harmonic potential well is studied. By using the variational method, the ground state properties for interacting BECs in the sh...The stability of Bose Einstein condensates (BECs) loaded into a two-dimensional shallow harmonic potential well is studied. By using the variational method, the ground state properties for interacting BECs in the shallow trap are discussed. It is shown that the possible stable bound state can exist. The depth of the shallow well plays an important role in stabilizing the BECs, The stability of BECs in the shallow trap with the periodic modulating of atom interaction by using the Feshbach resonance is also discussed. The results show that the collapse and diffusion of BECs in a shallow trap can be controlled by the temporal modulation of the scattering length.展开更多
The dynamics of a bright bright vector soliton in a cigar-shaped Bose-Einstein condensate trapping in a harmonic potential is studied. The interaction between bright solitons in different species with small separation...The dynamics of a bright bright vector soliton in a cigar-shaped Bose-Einstein condensate trapping in a harmonic potential is studied. The interaction between bright solitons in different species with small separation is derived. Unlike the interaction between solitons of the same species, it is independent of the phase difference between solitons. It may be of attraction or repulsion. In the former case, each soliton will oscillate about and pass through each other around the mass-center of the system, which will also oscillate harmonically due to the harmonic trapping potential.展开更多
The spatial chaos of Bose-Einstein condensates in a cigar-shaped trap is studied.For a system with asteady current,we construct the general solution of the 1st-order equation.From the boundedness condition of thegener...The spatial chaos of Bose-Einstein condensates in a cigar-shaped trap is studied.For a system with asteady current,we construct the general solution of the 1st-order equation.From the boundedness condition of thegeneral solution, we obtain the Melnikov function predicting the onset of chaos.The unpredictability of the system's dis-tribution of atom density is also theoretically analyzed.For a ^(23)Na system meeting the perturbation oondition,numericalsimulations show the existence of chaos,which is in accordance with our analytical results.Numerical simulations of a^(87)Rb system dissatisfying the perturbation condition also demonstrate that there exists chaos in the system.The casewithout a current is also investigated.展开更多
The nonlinear Landau Zener tunneling and nonlinear Rabi oscillations of Bose-Einstein condensate (BEC) with higher-order atomic interaction between the Bloch bands in an accelerating optical lattice are discussed. W...The nonlinear Landau Zener tunneling and nonlinear Rabi oscillations of Bose-Einstein condensate (BEC) with higher-order atomic interaction between the Bloch bands in an accelerating optical lattice are discussed. Within the two-level model, the tunneling probability of BEC with higher-order atomic interaction between Bloch bands is obtained. We finds that the tunneling rate is closely related to the higher-order atomic interaction. Furthermore, the nonlinear Rabi oscillations of BEC with higher-order atomic interaction between the bands are discussed by imposing a periodic modulation on the level bias. Analytical expressions of the critical higher-order atomic interaction for suppressing/enhancing the Rabi oscillations are obtained. It is shown that the critical value strongly depends on the modulation parameters (i.e., the modulation amplitude and frequency) and the strength of periodic potential.展开更多
We have developed a systematic analytical approach to the study on the dynamic properties of the linear and the nonlinear excitations for quasi-one-dimensional Bose-Einstein condensate trapped in optical lattices. A n...We have developed a systematic analytical approach to the study on the dynamic properties of the linear and the nonlinear excitations for quasi-one-dimensional Bose-Einstein condensate trapped in optical lattices. A novel linear dispersion relation and an algebraic soliton solution of the condensate are derived analytically under consideration of Bose-Einstein condensate with a periodic potential. By analysing the soliton solution, we find that the interatomic interaction strength has an important effect on soliton dynamic properties of Bose-Einstein condensate.展开更多
Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose-Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and...Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose-Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and sufficient conditions for boundedness of the perturbed solution. Theoretical analytical results and the corresponding numerical results show that the perturbed solution of the Bose-Einstein condensate system is unbounded in general and indicate that the Bose-Einstein condensates are Lyapunov-unstable. However, when the conditions for boundedness of the perturbed solution are satisfied, then the Bose-Einstein condensates are Lyapunov-stable.展开更多
Properties of the ground-state solitons, which exist in the spin-orbit coupling (SOC) Bose-Einstein condensates (BEC) in the presence of optical lattices, are presented. Results show that several system parameters...Properties of the ground-state solitons, which exist in the spin-orbit coupling (SOC) Bose-Einstein condensates (BEC) in the presence of optical lattices, are presented. Results show that several system parameters, such as SOC strength, lattice depth, and lattice frequency, have important influences on properties of ground state solitons in SOC BEC. By controlling these parameters, structure and spin polarization of the ground-state solitons can be effectively tuned, so ma- nipulation of atoms may be realized.展开更多
We investigate phase diffusion of a two-component Bose--Einstein condensates prepared initially in arbitrary coherent spin state |θ0,φ0|. Analytical expression of the phase-diffusion time is presented for θ0~π/...We investigate phase diffusion of a two-component Bose--Einstein condensates prepared initially in arbitrary coherent spin state |θ0,φ0|. Analytical expression of the phase-diffusion time is presented for θ0~π/2 case. In comparison with the symmetrical case (i.e., θ0=π/2), we find that the diffusion process becomes slow due to the reduced atom number variance.展开更多
We consider two coupled Gross Pitaevskii equations describing a two-component Bose Einstein condensate with time-dependent atomic interactions loaded in an external harmonic potential, and investigate the dynamics of ...We consider two coupled Gross Pitaevskii equations describing a two-component Bose Einstein condensate with time-dependent atomic interactions loaded in an external harmonic potential, and investigate the dynamics of vector solitons. By using a direct method, we construct a novel family of vector soliton solutions, which are the linear combination between dark and bright solitons in each component. Our results show that due to the superposition between dark and bright solitons, such vector solitons possess many novel and interesting properties. The dynamics of vector solitons can be controlled by the Feshbach resonance technique, and the vector solitons can keep the dynamic stability against the variation of the scattering length.展开更多
An extended variation approach to describing the dynamic evolution of self-attractive Bose-Einstein condensates is developed. We consider bright matter-wave solitons in the presence of a parabolic magnetic potential a...An extended variation approach to describing the dynamic evolution of self-attractive Bose-Einstein condensates is developed. We consider bright matter-wave solitons in the presence of a parabolic magnetic potential and a timespace periodic optical lattice. The dynamics of condensates is shown to be well approximated by four coupled nonlinear differential equations. A noteworthy feature is that the extended variation approach gives a critical strength ratio to support multiple stable lattice sites for the condensate. We further examine the existence of the solitons and their stabilities at the multiple stable lattice sites. In this case, the analytical predictions of Bose-Einstein condensates variational dynamics are found to be in good agreement with numerical simulations. We then find a stable region for successful manipulating matter-wave solitons without collapse, which are dragged from an initial stationary to a prescribed position by a moving periodic optical lattice.展开更多
This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general...This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general method of constructing nonstationary solutions. It obtains the unique features about general evolution and soliton evolution of nonstationary solutions in this model.展开更多
By using a multiple-scale method, we analytically study the effect of a localized impurity on the soliton dynamics in the Bose-Einstein condensates. It is shown that a dark soliton can be transmitted through a repulsi...By using a multiple-scale method, we analytically study the effect of a localized impurity on the soliton dynamics in the Bose-Einstein condensates. It is shown that a dark soliton can be transmitted through a repulsive (or attractive) impurity, while at the position of the localized impurity the soliton can be quasitrapped by the impurity. Additionally, we find that the strength of the localized impurity has an important effect on the dark soliton dynamics. With increasing strength of the localized impurity, the amplitude of the dark soliton becomes bigger, while its width is narrower, and the soliton propagates slower.展开更多
Interaction between Rydberg atoms can be used to control the properties of interatomic interaction in ultracold gases by weakly dressing the atoms with a Rydberg state. Here we investigate the effect of the Rydberg-dr...Interaction between Rydberg atoms can be used to control the properties of interatomic interaction in ultracold gases by weakly dressing the atoms with a Rydberg state. Here we investigate the effect of the Rydberg-dressing interaction on the ground-state properties of a Bose–Einstein condensate imposed by Raman-induced spin–orbit coupling. We find that,in the case of SU(2)-invariant s-wave interactions, the gas is only in the plane-wave phase and the zero-momentum phase is absent. In particular, we also predict an unexpected magnetic stripe phase composed of two plane-wave components with unequal weight when s-wave interactions are non-symmetric, which originates from the Rydberg-dressing interaction.展开更多
We present two kinds of exact vector-soliton solutions for coupled nonlinear Schrodinger equations with time- varying interactions and time-varying harmonic potential. Using the variational approach, we investigate th...We present two kinds of exact vector-soliton solutions for coupled nonlinear Schrodinger equations with time- varying interactions and time-varying harmonic potential. Using the variational approach, we investigate the dynamics of the vector solitons. It is found that the two bright sol/tons oscillate about slightly and pass through each other around the equilibration state which means that they are stable under our modeh At the same time, we obtain the opposite situation for dark-dark solitons.展开更多
We investigate localized atomic matter waves in the two-photon microwave field. Interestingly, the oscillations two-component Bose-Einstein condensates coupled by of localized atomic matter waves will gradually decay ...We investigate localized atomic matter waves in the two-photon microwave field. Interestingly, the oscillations two-component Bose-Einstein condensates coupled by of localized atomic matter waves will gradually decay and finally become non-oscillating behavior even if existing coupling field. In particular, atom numbers occupied in two different hyperfine spin states will appear asymmetric occupations after some time evolution.展开更多
We investigate dynamics of Bose–Einstein condensates(BECs) in a single-well potential using the mode-coupling method. Symmetry is shown to play a key role in the coupling between modes. A proper mode-coupling theory ...We investigate dynamics of Bose–Einstein condensates(BECs) in a single-well potential using the mode-coupling method. Symmetry is shown to play a key role in the coupling between modes. A proper mode-coupling theory of the dynamics of BECs in a single-well potential should include at least four modes. In this context, the ideal BEC system can be decomposed into two independent subsystems when the coupling is caused by external potential perturbation and is linear. The mode dynamics of non-ideal BECs with interaction shows rich behavior. The combination of nonlinear coupling and initial condition leads to the different regimes of mode dynamics, from regularity to non-regularity, which also indicates a change of the dependence of coupling on the symmetry of modes.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12065022 and 12147213)。
文摘The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos 10575087 and 10302018), and the Natural Science Foundation of Zhejiang Province, China (Grant No Y605056).
文摘We present several families of exact solutions to a system of coupled nonlinear Schrodinger equations. The model describes a binary mixture of two Bose-Einstein condensates in a magnetic trap potential. Using a mapping deformation method, we find exact periodic wave and soliton solutions, including bright and dark soliton pairs.
基金supported by National Natural Science Foundation of China under Grant No.10474022
文摘An improved nonlinear Schrodinger equation different from usual one of spinor Bose-Einstein condensates (BECs) in an optical lattice are obtained by taking into account a nonlinear term in the equation of motion for probability amplitude of spins carefully. The elliptic function wave solutions of the model are found under specific boundary condition, for example, the two ends of the atomic chain are fixed. In the case of limit the elliptic function wave solutions are reduced into spin-wave-like or solitons.
基金Project supported by the Key Research Foundation of Education Bureau of Hunan Province, China (Grant No 08A015)the Natural Science Foundation of Hunan Province, China (Grant No 06JJ2014)the National Natural Science Foundation of China (Grant No 10575034)
文摘The stable nonlinear transport of the Bose-Einstein condensates through a double barrier potential in a waveguide is studied. By using the direct perturbation method we have obtained a perturbed solution of Cross-Pitaevskii equation. Theoretical analysis reveals that this perturbed solution is a stable periodic solution, which shows that the transport of Bose-Einstein condensed atoms in this system is a stable nonlinear transport. The corresponding numerical results are in good agreement with the theoretical analytical results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10475066 and 10774120), and by the Natural Science Foundation of Gansu Province, China (Grant No 3ZS051-A25-013) and by Creation of Science and Technology of Northwest Normal University, China (Grant No NWNU-KJCXGC-03-17).
文摘The stability of Bose Einstein condensates (BECs) loaded into a two-dimensional shallow harmonic potential well is studied. By using the variational method, the ground state properties for interacting BECs in the shallow trap are discussed. It is shown that the possible stable bound state can exist. The depth of the shallow well plays an important role in stabilizing the BECs, The stability of BECs in the shallow trap with the periodic modulating of atom interaction by using the Feshbach resonance is also discussed. The results show that the collapse and diffusion of BECs in a shallow trap can be controlled by the temporal modulation of the scattering length.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10775049)the Natural Science Foundation of Hunan Province of China (Grant No. 09JJ6008)
文摘The dynamics of a bright bright vector soliton in a cigar-shaped Bose-Einstein condensate trapping in a harmonic potential is studied. The interaction between bright solitons in different species with small separation is derived. Unlike the interaction between solitons of the same species, it is independent of the phase difference between solitons. It may be of attraction or repulsion. In the former case, each soliton will oscillate about and pass through each other around the mass-center of the system, which will also oscillate harmonically due to the harmonic trapping potential.
基金National Natural Science Foundation of China under Grant No. 10125521the 973 National Major State Basic Research and Development of China under Grant No. 62000077400+1 种基金the CAS Knowledge Innovation Project under Grant No. KJCX2-SW-N02the Fund of Education Ministry of China under Grant No. 20010284036
文摘The spatial chaos of Bose-Einstein condensates in a cigar-shaped trap is studied.For a system with asteady current,we construct the general solution of the 1st-order equation.From the boundedness condition of thegeneral solution, we obtain the Melnikov function predicting the onset of chaos.The unpredictability of the system's dis-tribution of atom density is also theoretically analyzed.For a ^(23)Na system meeting the perturbation oondition,numericalsimulations show the existence of chaos,which is in accordance with our analytical results.Numerical simulations of a^(87)Rb system dissatisfying the perturbation condition also demonstrate that there exists chaos in the system.The casewithout a current is also investigated.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10774120 and 10975114)the Natural Science Foundation of Gansu Province of China (Grant No. 1010RJZA012)the Science Foundation for Creation of Scienceand Technology of Northwest Normal University of China (Grant Nos. NWNU-KJCXGC-03-17 and NWNU-KJCXGC-03-48)
文摘The nonlinear Landau Zener tunneling and nonlinear Rabi oscillations of Bose-Einstein condensate (BEC) with higher-order atomic interaction between the Bloch bands in an accelerating optical lattice are discussed. Within the two-level model, the tunneling probability of BEC with higher-order atomic interaction between Bloch bands is obtained. We finds that the tunneling rate is closely related to the higher-order atomic interaction. Furthermore, the nonlinear Rabi oscillations of BEC with higher-order atomic interaction between the bands are discussed by imposing a periodic modulation on the level bias. Analytical expressions of the critical higher-order atomic interaction for suppressing/enhancing the Rabi oscillations are obtained. It is shown that the critical value strongly depends on the modulation parameters (i.e., the modulation amplitude and frequency) and the strength of periodic potential.
文摘We have developed a systematic analytical approach to the study on the dynamic properties of the linear and the nonlinear excitations for quasi-one-dimensional Bose-Einstein condensate trapped in optical lattices. A novel linear dispersion relation and an algebraic soliton solution of the condensate are derived analytically under consideration of Bose-Einstein condensate with a periodic potential. By analysing the soliton solution, we find that the interatomic interaction strength has an important effect on soliton dynamic properties of Bose-Einstein condensate.
基金supported by the Natural Science Foundation of Hunan Province of China (Grant No. 10JJ3088)the Key Research Foundation of the Education Bureau of Hunan Province of China (Grant Nos. 08A015 and 10A026)
文摘Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose-Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and sufficient conditions for boundedness of the perturbed solution. Theoretical analytical results and the corresponding numerical results show that the perturbed solution of the Bose-Einstein condensate system is unbounded in general and indicate that the Bose-Einstein condensates are Lyapunov-unstable. However, when the conditions for boundedness of the perturbed solution are satisfied, then the Bose-Einstein condensates are Lyapunov-stable.
基金supported by the National Natural Science Foundation of China(Grant Nos.11547007 and 11304024)the Yangtze Youth Fund(Grant No.2016cqn55)the Yangtze Fund for Youth Teams of Science and Technology Innovation(Grant No.2015cqt03)
文摘Properties of the ground-state solitons, which exist in the spin-orbit coupling (SOC) Bose-Einstein condensates (BEC) in the presence of optical lattices, are presented. Results show that several system parameters, such as SOC strength, lattice depth, and lattice frequency, have important influences on properties of ground state solitons in SOC BEC. By controlling these parameters, structure and spin polarization of the ground-state solitons can be effectively tuned, so ma- nipulation of atoms may be realized.
基金supported by the National Natural Science Foundation of China (Grant No. 10804007)the Special Research Foundation and Development Program (Grant No. 200800041003)Research Funds of Beijing Jiaotong University (Grant No. 2007XM049)
文摘We investigate phase diffusion of a two-component Bose--Einstein condensates prepared initially in arbitrary coherent spin state |θ0,φ0|. Analytical expression of the phase-diffusion time is presented for θ0~π/2 case. In comparison with the symmetrical case (i.e., θ0=π/2), we find that the diffusion process becomes slow due to the reduced atom number variance.
基金Project supported by the National Key Basic Research Program of China (Grant Nos. 2011CB921502,2012CB821305,2009CB930701,and 2010CB922904)the National Natural Science Foundation of China (NSFC) (Grant Nos. 10934010 and60978019)+1 种基金the NSFC-RGC (Grant Nos. 11061160490 and 1386-N-HKU748/10)the Key Program of the Chinese Ministry of Education (Grant No. 2011015)
文摘We consider two coupled Gross Pitaevskii equations describing a two-component Bose Einstein condensate with time-dependent atomic interactions loaded in an external harmonic potential, and investigate the dynamics of vector solitons. By using a direct method, we construct a novel family of vector soliton solutions, which are the linear combination between dark and bright solitons in each component. Our results show that due to the superposition between dark and bright solitons, such vector solitons possess many novel and interesting properties. The dynamics of vector solitons can be controlled by the Feshbach resonance technique, and the vector solitons can keep the dynamic stability against the variation of the scattering length.
基金supported by the National Natural Science Foundation of China (Grant Nos.10672147 and 11072219)the Natural Science Foundation of Zhejiang Province,China (Grant Nos.Y605312 and Y1080959)the Foundation of Department of Education of Zhejiang Province,China (Grant No.20030704)
文摘An extended variation approach to describing the dynamic evolution of self-attractive Bose-Einstein condensates is developed. We consider bright matter-wave solitons in the presence of a parabolic magnetic potential and a timespace periodic optical lattice. The dynamics of condensates is shown to be well approximated by four coupled nonlinear differential equations. A noteworthy feature is that the extended variation approach gives a critical strength ratio to support multiple stable lattice sites for the condensate. We further examine the existence of the solitons and their stabilities at the multiple stable lattice sites. In this case, the analytical predictions of Bose-Einstein condensates variational dynamics are found to be in good agreement with numerical simulations. We then find a stable region for successful manipulating matter-wave solitons without collapse, which are dragged from an initial stationary to a prescribed position by a moving periodic optical lattice.
基金supported by the National Natural Science Foundation of China (Grant No. 1057411)the Foundation for Researching Group by Beijing Normal Universitythe Foundation for Outstanding Doctoral Dissertation by Beijing Normal University
文摘This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general method of constructing nonstationary solutions. It obtains the unique features about general evolution and soliton evolution of nonstationary solutions in this model.
基金supported by the Natural Science Foundation of Hunan Province of China (Grant No. 07JJ3002)the Fund of the 11th Five-year Plan for Key Construction Academic Subject (Optics) of Hunan Province of Chinathe Scientific Research Foundation of the Science and Technology Bureau of Hunan Province of China (Grant No. GK3059)
文摘By using a multiple-scale method, we analytically study the effect of a localized impurity on the soliton dynamics in the Bose-Einstein condensates. It is shown that a dark soliton can be transmitted through a repulsive (or attractive) impurity, while at the position of the localized impurity the soliton can be quasitrapped by the impurity. Additionally, we find that the strength of the localized impurity has an important effect on the dark soliton dynamics. With increasing strength of the localized impurity, the amplitude of the dark soliton becomes bigger, while its width is narrower, and the soliton propagates slower.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB921504)the National Natural Science Foundation of China(Grant No.11104292)
文摘Interaction between Rydberg atoms can be used to control the properties of interatomic interaction in ultracold gases by weakly dressing the atoms with a Rydberg state. Here we investigate the effect of the Rydberg-dressing interaction on the ground-state properties of a Bose–Einstein condensate imposed by Raman-induced spin–orbit coupling. We find that,in the case of SU(2)-invariant s-wave interactions, the gas is only in the plane-wave phase and the zero-momentum phase is absent. In particular, we also predict an unexpected magnetic stripe phase composed of two plane-wave components with unequal weight when s-wave interactions are non-symmetric, which originates from the Rydberg-dressing interaction.
基金Projects supported by the National Natural Science Foundation of China (Grant Nos. 10775049 and 10375022)
文摘We present two kinds of exact vector-soliton solutions for coupled nonlinear Schrodinger equations with time- varying interactions and time-varying harmonic potential. Using the variational approach, we investigate the dynamics of the vector solitons. It is found that the two bright sol/tons oscillate about slightly and pass through each other around the equilibration state which means that they are stable under our modeh At the same time, we obtain the opposite situation for dark-dark solitons.
基金The project supported by National Natural Science Foundation of China under Grant Nos.90403034,90406017,and 60525417the State Key Basic Research Program of China under Nos.2005CB724508 and 2006CB921400
文摘We investigate localized atomic matter waves in the two-photon microwave field. Interestingly, the oscillations two-component Bose-Einstein condensates coupled by of localized atomic matter waves will gradually decay and finally become non-oscillating behavior even if existing coupling field. In particular, atom numbers occupied in two different hyperfine spin states will appear asymmetric occupations after some time evolution.
文摘We investigate dynamics of Bose–Einstein condensates(BECs) in a single-well potential using the mode-coupling method. Symmetry is shown to play a key role in the coupling between modes. A proper mode-coupling theory of the dynamics of BECs in a single-well potential should include at least four modes. In this context, the ideal BEC system can be decomposed into two independent subsystems when the coupling is caused by external potential perturbation and is linear. The mode dynamics of non-ideal BECs with interaction shows rich behavior. The combination of nonlinear coupling and initial condition leads to the different regimes of mode dynamics, from regularity to non-regularity, which also indicates a change of the dependence of coupling on the symmetry of modes.