This paper investigates the collective excitation and stability of low-dimensional Bose-Einstein condensates with two- and three-body interactions by the variational analysis of the time-dependent Gross-Pitaevskii-Gin...This paper investigates the collective excitation and stability of low-dimensional Bose-Einstein condensates with two- and three-body interactions by the variational analysis of the time-dependent Gross-Pitaevskii-Ginsburg equation. The spectrum of the low-energy excitation and the effective potential for the width of the condensate axe obtained. The results show that: (i) the repulsive two-body interaction among atoms makes the frequency red-shifted for the internal excitation and the repulsive or attractive three-body interaction always makes it blue-shifted; (ii) the region for the existence of the stable bound states is obtained by identifying the critical value of the two- and three-body interactions.展开更多
基金supported by the Natural Science Foundation of Shaanxi University of Science and Technology,China (Grant Nos SUST-ZX08-27 and SUST-ZX07-32)
文摘This paper investigates the collective excitation and stability of low-dimensional Bose-Einstein condensates with two- and three-body interactions by the variational analysis of the time-dependent Gross-Pitaevskii-Ginsburg equation. The spectrum of the low-energy excitation and the effective potential for the width of the condensate axe obtained. The results show that: (i) the repulsive two-body interaction among atoms makes the frequency red-shifted for the internal excitation and the repulsive or attractive three-body interaction always makes it blue-shifted; (ii) the region for the existence of the stable bound states is obtained by identifying the critical value of the two- and three-body interactions.