In this paper, we investigate the dynamical instability of the dark state in the conversion of Bose-Fermi mixtures into stable molecules through a stimulated Raman adiabatic passage aided by Feshbach resonance. We ana...In this paper, we investigate the dynamical instability of the dark state in the conversion of Bose-Fermi mixtures into stable molecules through a stimulated Raman adiabatic passage aided by Feshbach resonance. We analytically obtain the regions where the dynamical instability appears and find that such instability in the Bose-Fermi mixture system is caused not only by bosonic interparticle interactions but also by Pauli blocking terms, which is different from the scenario of a pure bosonic system where instability is induced by nonlinear interparticle collisions. Taking a 40K-87Rb mixture as an example, we give the unstable regions numerically.展开更多
This paper investigates the dynamical instability and adiabatic evolution of the atom homonuclear-trimer dark state of a condensate system in a stimulated Raman adiabatic passage aided by Feshbach resonance. It obtain...This paper investigates the dynamical instability and adiabatic evolution of the atom homonuclear-trimer dark state of a condensate system in a stimulated Raman adiabatic passage aided by Feshbach resonance. It obtains analytically the regions for the appearance of dynamical instability caused by the interparticle interactions. Moreover, the adiabatic property of the dark state is also studied in terms of a newly defined adiabatic fidelity. It shows that the nonlinear collisions have a negative effect on the adiabaticity of the dark state and hence reduce the conversion efficiency.展开更多
In the present paper, we investigate the instability, adiabaticity, and controlling effects of external fields for a dark state in a homonuclear atom-tetramer conversion that is implemented by a generalized stimulated...In the present paper, we investigate the instability, adiabaticity, and controlling effects of external fields for a dark state in a homonuclear atom-tetramer conversion that is implemented by a generalized stimulated Raman adiabatic passage. We analytically obtain the regions for the appearance of dynamical instability and study the adiabatic evolution by a newly defined adiabatic fidelity. Moreover, the effects of the external field parameters and the spontaneous emissions on the conversion efficiency are also investigated.展开更多
基金Project supported by the National Natural Science Foundation of China (Grants Nos. 10725521,11005055,and 11075020)the National Fundamental Research Programme of China (Grant No. 2011CB921503)+2 种基金the Natural Science Foundation of Liaoning Province,China (Grant No. 20072054)the Science and Technology Plan Projects of Liaoning Provincial Department of Education,China (Grant No. 2009S045)the Shenyang Planning Project of Science and Technology Bureau,China (Grant No. 1091187-1-00)
文摘In this paper, we investigate the dynamical instability of the dark state in the conversion of Bose-Fermi mixtures into stable molecules through a stimulated Raman adiabatic passage aided by Feshbach resonance. We analytically obtain the regions where the dynamical instability appears and find that such instability in the Bose-Fermi mixture system is caused not only by bosonic interparticle interactions but also by Pauli blocking terms, which is different from the scenario of a pure bosonic system where instability is induced by nonlinear interparticle collisions. Taking a 40K-87Rb mixture as an example, we give the unstable regions numerically.
基金supported by the National Natural Science Foundation of China (Grant Nos 10674174,10604009 and 10725521)the National Fundamental Research Programme of China (Grant No 2006CB921400 and 2007CB814800)Natural Science Foundation of Liaoning Province of China (Grant No 20072054)
文摘This paper investigates the dynamical instability and adiabatic evolution of the atom homonuclear-trimer dark state of a condensate system in a stimulated Raman adiabatic passage aided by Feshbach resonance. It obtains analytically the regions for the appearance of dynamical instability caused by the interparticle interactions. Moreover, the adiabatic property of the dark state is also studied in terms of a newly defined adiabatic fidelity. It shows that the nonlinear collisions have a negative effect on the adiabaticity of the dark state and hence reduce the conversion efficiency.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11005055,11075020,and 11204117)the National Fundamental Research Programme of China(Grant No.2011CB921503)+1 种基金the Ph.D.Programs Foundation of Liaoning Provincial Science and Technology Bureau(GrantNo.201103778)the Higher School Excellent Researcher Award Program from the Educational Department of Liaoning Province of China(GrantNo.LJQ2011005)
文摘In the present paper, we investigate the instability, adiabaticity, and controlling effects of external fields for a dark state in a homonuclear atom-tetramer conversion that is implemented by a generalized stimulated Raman adiabatic passage. We analytically obtain the regions for the appearance of dynamical instability and study the adiabatic evolution by a newly defined adiabatic fidelity. Moreover, the effects of the external field parameters and the spontaneous emissions on the conversion efficiency are also investigated.