[ Objective ] The study aimed to explore the release conditions for the conidia of Botryosphaena berengeriana and understand the release dynamic of conidia. [Method] The systematical survey on the release conditions f...[ Objective ] The study aimed to explore the release conditions for the conidia of Botryosphaena berengeriana and understand the release dynamic of conidia. [Method] The systematical survey on the release conditions for the conidia of B. berengeriana were conducted in two growing seasons in 2008 and 2009, combined with the collection of meteorological data around conidia release period, the weather conditions causing large amount release of B. berengedana were analyzed. [ Result] During a growing season, the conidia of pathogen appeared several large release peaks. Under the suitable temperature, when the precipitation lasted for 4 h, the conidia of B. berengeriana began to release with large amount, the amount of conidia reached the peak after release and trended to be stable during 4 - 12 h, which significantly reduced after 24 h, tended to dis- appear after 36 h, and completely disappeared after 72 h. [Conclusion] The dominant factor affecting B. berengeriana conidia release in large a- mount was precipitation, while the lasting time of precipitation played a decisive role.展开更多
[Objective] The aim was to understand defense mechanism of pear after inoculated Botryosphaeria berengeriana f. sp. piricolan and mechanism of antioxidant enzymes of biocontrol bacteria. [Method] Pears were treated by...[Objective] The aim was to understand defense mechanism of pear after inoculated Botryosphaeria berengeriana f. sp. piricolan and mechanism of antioxidant enzymes of biocontrol bacteria. [Method] Pears were treated by Botryosphaeria berengeriana f. sp. piricolan and bio control bacteria, and the change of antioxidant enzymes were determined. [Result] The biocontrol bacteria had little effect on MDA;the content of MDA treated by B. berengeriana reached high peak in 48 h, was 10.22nmol/g which was 1.86 times of CK; the content of MDA treated by B. berengeriana and biocontrol bacteria reached high peak in 24 h, was 8.92 nmol/g which was1.62 times of CK. The content of SOD treated by biocontrol bacteria reached high peak in 48 h, was 126.69 U/[g(FW)·min] which was 1.54 times of CK; the contents of SOD treated by B. berengeriana as well as B. berengeriana and biocontrol bacteria reached high peak in 24 h, were 122.10 and 135.32 U/[g(FW)·min] which were 1.48 and 1.65 times of CK respectively; the contents of POD on biocontrol bacteria treatment, B. ana treatment as well as B. berengeriana and biocontrol bacteria treatment reached high peak in 24 h, were 385.34, 342.50 and 290.00 U/[g(FW)·min] which were 1.83, 1.62 and 1.38 times of CK respectively. The contents of CAT on biocontrol bacteria treatment, B. rengeriana treatment as well as B. berengeriana and biocontrol bacteria treatment reached high peak in 6 h, were 133.33,114.17 and 113.35 U/[g(FW)·min] which were 1.33, 1.14 and 1.13 times of CK respectively. The biocontrol bacteria had little difference in CK; the content of PPO of B. berengeriana treatment reached high peak in 12 h, was 81.86 U/[g(FW)·min]which was 1.76 times of CK; B. berengeriana and biocontrol bacteria treatment reached high peak in 24 h, was 70.00 U/[g(FW)·min] which was 1.50 times of CK.[Conclusion] B. berengeriana and biocontrol bacteria had more effect on MDA; both B. berengeriana and biocontrol bacteria could increase the excitation of SOD enzyme activity; both B. berengeriana and biocontrol bacteria could increase the excitation of POD enzyme activity; both B. berengeriana and biocontrol bacteria could increase the excitation of CAT enzyme activity; using biocontrol bacteria alone had not obvious effect on PPO, B. berengeriana could increase the excitation of PPO enzyme activity.展开更多
【目的】分析苹果轮纹病菌(Botryosphaeria berengeriana)的遗传多样性并确认其优势类群。【方法】对采集分离的64个菌株进行形态特征和致病性测定,对部分菌株的进行了ITS序列测序,采用ISSR分析这些菌株的遗传多样性。【结果】通过形态...【目的】分析苹果轮纹病菌(Botryosphaeria berengeriana)的遗传多样性并确认其优势类群。【方法】对采集分离的64个菌株进行形态特征和致病性测定,对部分菌株的进行了ITS序列测序,采用ISSR分析这些菌株的遗传多样性。【结果】通过形态特征和致病性明确了所分离的64个菌株是苹果轮纹病菌。17个菌株ITS序列与贝格伦葡萄座腔菌(Botryosphaeria berengeriana de Not f.sp.piricola(Nose)Koganezawa et Sakuma)的序列一致,并且被分成两个类型H1和H2。用13条ISSR引物从64个菌株中扩增出121条条带,其中88条多态性条带,多态性比率为72%。64个菌株的遗传相似性从0.44到0.99,并且被分成2个ISSR类群,类群1包含21个菌株、类群2包含43个菌株。【结论】本研究中贝格伦葡萄座腔菌的遗传多样性与菌株的地域、症状以及分离部位没有相关性。苹果轮纹病菌被分成2个ISSR类群,类群2是优势类群。展开更多
利用菌丝生长速率法测定了采自中国苹果主产区4省27个县市的苹果轮纹病菌(Botryospha eriaberengeriana f. sp. piricola)对多菌灵、亚胺唑和丙环唑的敏感性。结果表明,苹果轮纹病菌对多菌灵的敏感程度最高,其EC50平均值为(0.1415±...利用菌丝生长速率法测定了采自中国苹果主产区4省27个县市的苹果轮纹病菌(Botryospha eriaberengeriana f. sp. piricola)对多菌灵、亚胺唑和丙环唑的敏感性。结果表明,苹果轮纹病菌对多菌灵的敏感程度最高,其EC50平均值为(0.1415±0.0887)mg·L-1,对亚胺唑和丙环唑的次之,其EC50平均值分别为(0.1994±0.2431)和(0.2809±0.2607)mg·mL-1。对上述3种药剂间的交互抗性分析显示,多菌灵和亚胺唑、多菌灵和丙环唑之间没有交互抗性,而丙环唑和亚胺唑之间有交互抗性。但在田间已发现2株对多菌灵和丙环唑的敏感性都相对较低的菌株。展开更多
【目的】从鸭梨果实中克隆Pb Chi IV的全长c DNA序列,检测Pb Chi IV在根、茎、叶、果实以及在水杨酸(SA)和梨轮纹病菌诱导下的表达特性,以探讨该基因与SA信号转导及抗梨轮纹病菌的相关性。【方法】设计特异引物,克隆Pb Chi IV的全长序列...【目的】从鸭梨果实中克隆Pb Chi IV的全长c DNA序列,检测Pb Chi IV在根、茎、叶、果实以及在水杨酸(SA)和梨轮纹病菌诱导下的表达特性,以探讨该基因与SA信号转导及抗梨轮纹病菌的相关性。【方法】设计特异引物,克隆Pb Chi IV的全长序列,将测序得到的核苷酸序列和推导的氨基酸序列在NCBI上用BLAST进行序列相似性分析,利用Biot Edit软件对氨基酸序列进行比对,利用MEGA6.0构建系统发育树,利用实时荧光定量PCR技术分析该基因在梨不同组织以及在SA和梨轮纹病菌诱导下的表达。【结果】克隆了Pb Chi IV的c DNA序列为819 bp,Gen Bank数据库登录号为KJ872676。生物信息学分析表明,Pb Chi IV编码272个氨基酸,与沙梨的同源性达100%,与毛果杨(XP_006376418.1)、葡萄(NP001268173.1)、拟南芥(CAA74930.1)、紫花苜蓿(ACL36992.1)、蒺藜苜蓿(AAR87869.1)、豇豆(CAA61281.1)、榛子(AEM97876.1)、东方山羊豆(AAP03085.1)、葡萄(NP_001268075.1)、华东葡萄(ABY66958.1)、葡萄(AAB65777.1)、烟草(BAF44533.1)和海岛棉(AER29902.1)的同源性分别为79%、73%、73%、72%、72%、72%、69%、68%、67%、67%、65%、67%和62%,属于第IV类几丁质酶基因。表达分析表明,Pb Chi IV在根中的表达量最大,分别是茎和叶的4.32和2.96倍,其次是在果实中的表达量,分别是茎和叶的2.48和1.70倍,在叶片和茎中的表达相对较低。在鸭梨幼果和成熟期果实中,SA和梨轮纹病菌均可诱导该基因表达。SA处理后基因的最大表达量是对照的2.83和3.8倍,病原菌处理后基因的最大表达量是对照的1.82和1.66倍,SA、病原菌处理后基因的最大表达量是对照的2.49和3.43倍,表达量分别在72、24和72 h达到最大值。【结论】Pb Chi IV可能参与SA介导的植物抗病防卫反应的信号通路,推测其参与梨轮纹病菌引起的防卫反应,在鸭梨抗病过程中起作用。展开更多
基金Supported by State Apple Industry Technology System Project(nybcytx-08-04-01)~~
文摘[ Objective ] The study aimed to explore the release conditions for the conidia of Botryosphaena berengeriana and understand the release dynamic of conidia. [Method] The systematical survey on the release conditions for the conidia of B. berengeriana were conducted in two growing seasons in 2008 and 2009, combined with the collection of meteorological data around conidia release period, the weather conditions causing large amount release of B. berengedana were analyzed. [ Result] During a growing season, the conidia of pathogen appeared several large release peaks. Under the suitable temperature, when the precipitation lasted for 4 h, the conidia of B. berengeriana began to release with large amount, the amount of conidia reached the peak after release and trended to be stable during 4 - 12 h, which significantly reduced after 24 h, tended to dis- appear after 36 h, and completely disappeared after 72 h. [Conclusion] The dominant factor affecting B. berengeriana conidia release in large a- mount was precipitation, while the lasting time of precipitation played a decisive role.
文摘[Objective] The aim was to understand defense mechanism of pear after inoculated Botryosphaeria berengeriana f. sp. piricolan and mechanism of antioxidant enzymes of biocontrol bacteria. [Method] Pears were treated by Botryosphaeria berengeriana f. sp. piricolan and bio control bacteria, and the change of antioxidant enzymes were determined. [Result] The biocontrol bacteria had little effect on MDA;the content of MDA treated by B. berengeriana reached high peak in 48 h, was 10.22nmol/g which was 1.86 times of CK; the content of MDA treated by B. berengeriana and biocontrol bacteria reached high peak in 24 h, was 8.92 nmol/g which was1.62 times of CK. The content of SOD treated by biocontrol bacteria reached high peak in 48 h, was 126.69 U/[g(FW)·min] which was 1.54 times of CK; the contents of SOD treated by B. berengeriana as well as B. berengeriana and biocontrol bacteria reached high peak in 24 h, were 122.10 and 135.32 U/[g(FW)·min] which were 1.48 and 1.65 times of CK respectively; the contents of POD on biocontrol bacteria treatment, B. ana treatment as well as B. berengeriana and biocontrol bacteria treatment reached high peak in 24 h, were 385.34, 342.50 and 290.00 U/[g(FW)·min] which were 1.83, 1.62 and 1.38 times of CK respectively. The contents of CAT on biocontrol bacteria treatment, B. rengeriana treatment as well as B. berengeriana and biocontrol bacteria treatment reached high peak in 6 h, were 133.33,114.17 and 113.35 U/[g(FW)·min] which were 1.33, 1.14 and 1.13 times of CK respectively. The biocontrol bacteria had little difference in CK; the content of PPO of B. berengeriana treatment reached high peak in 12 h, was 81.86 U/[g(FW)·min]which was 1.76 times of CK; B. berengeriana and biocontrol bacteria treatment reached high peak in 24 h, was 70.00 U/[g(FW)·min] which was 1.50 times of CK.[Conclusion] B. berengeriana and biocontrol bacteria had more effect on MDA; both B. berengeriana and biocontrol bacteria could increase the excitation of SOD enzyme activity; both B. berengeriana and biocontrol bacteria could increase the excitation of POD enzyme activity; both B. berengeriana and biocontrol bacteria could increase the excitation of CAT enzyme activity; using biocontrol bacteria alone had not obvious effect on PPO, B. berengeriana could increase the excitation of PPO enzyme activity.
文摘【目的】分析苹果轮纹病菌(Botryosphaeria berengeriana)的遗传多样性并确认其优势类群。【方法】对采集分离的64个菌株进行形态特征和致病性测定,对部分菌株的进行了ITS序列测序,采用ISSR分析这些菌株的遗传多样性。【结果】通过形态特征和致病性明确了所分离的64个菌株是苹果轮纹病菌。17个菌株ITS序列与贝格伦葡萄座腔菌(Botryosphaeria berengeriana de Not f.sp.piricola(Nose)Koganezawa et Sakuma)的序列一致,并且被分成两个类型H1和H2。用13条ISSR引物从64个菌株中扩增出121条条带,其中88条多态性条带,多态性比率为72%。64个菌株的遗传相似性从0.44到0.99,并且被分成2个ISSR类群,类群1包含21个菌株、类群2包含43个菌株。【结论】本研究中贝格伦葡萄座腔菌的遗传多样性与菌株的地域、症状以及分离部位没有相关性。苹果轮纹病菌被分成2个ISSR类群,类群2是优势类群。
文摘利用菌丝生长速率法测定了采自中国苹果主产区4省27个县市的苹果轮纹病菌(Botryospha eriaberengeriana f. sp. piricola)对多菌灵、亚胺唑和丙环唑的敏感性。结果表明,苹果轮纹病菌对多菌灵的敏感程度最高,其EC50平均值为(0.1415±0.0887)mg·L-1,对亚胺唑和丙环唑的次之,其EC50平均值分别为(0.1994±0.2431)和(0.2809±0.2607)mg·mL-1。对上述3种药剂间的交互抗性分析显示,多菌灵和亚胺唑、多菌灵和丙环唑之间没有交互抗性,而丙环唑和亚胺唑之间有交互抗性。但在田间已发现2株对多菌灵和丙环唑的敏感性都相对较低的菌株。
文摘【目的】从鸭梨果实中克隆Pb Chi IV的全长c DNA序列,检测Pb Chi IV在根、茎、叶、果实以及在水杨酸(SA)和梨轮纹病菌诱导下的表达特性,以探讨该基因与SA信号转导及抗梨轮纹病菌的相关性。【方法】设计特异引物,克隆Pb Chi IV的全长序列,将测序得到的核苷酸序列和推导的氨基酸序列在NCBI上用BLAST进行序列相似性分析,利用Biot Edit软件对氨基酸序列进行比对,利用MEGA6.0构建系统发育树,利用实时荧光定量PCR技术分析该基因在梨不同组织以及在SA和梨轮纹病菌诱导下的表达。【结果】克隆了Pb Chi IV的c DNA序列为819 bp,Gen Bank数据库登录号为KJ872676。生物信息学分析表明,Pb Chi IV编码272个氨基酸,与沙梨的同源性达100%,与毛果杨(XP_006376418.1)、葡萄(NP001268173.1)、拟南芥(CAA74930.1)、紫花苜蓿(ACL36992.1)、蒺藜苜蓿(AAR87869.1)、豇豆(CAA61281.1)、榛子(AEM97876.1)、东方山羊豆(AAP03085.1)、葡萄(NP_001268075.1)、华东葡萄(ABY66958.1)、葡萄(AAB65777.1)、烟草(BAF44533.1)和海岛棉(AER29902.1)的同源性分别为79%、73%、73%、72%、72%、72%、69%、68%、67%、67%、65%、67%和62%,属于第IV类几丁质酶基因。表达分析表明,Pb Chi IV在根中的表达量最大,分别是茎和叶的4.32和2.96倍,其次是在果实中的表达量,分别是茎和叶的2.48和1.70倍,在叶片和茎中的表达相对较低。在鸭梨幼果和成熟期果实中,SA和梨轮纹病菌均可诱导该基因表达。SA处理后基因的最大表达量是对照的2.83和3.8倍,病原菌处理后基因的最大表达量是对照的1.82和1.66倍,SA、病原菌处理后基因的最大表达量是对照的2.49和3.43倍,表达量分别在72、24和72 h达到最大值。【结论】Pb Chi IV可能参与SA介导的植物抗病防卫反应的信号通路,推测其参与梨轮纹病菌引起的防卫反应,在鸭梨抗病过程中起作用。