The SKS furnace is a horizontal cylindrical reactor similar to a Noranda furnace,however,the oxygen enriched air isblown into the furnace from the bottom.Mechanism model of the SKS process was developed by analyzing t...The SKS furnace is a horizontal cylindrical reactor similar to a Noranda furnace,however,the oxygen enriched air isblown into the furnace from the bottom.Mechanism model of the SKS process was developed by analyzing the smeltingcharacteristics deeply.In our model,the furnace section from top to bottom is divided into seven functional layers,i.e.,gas layer,mineral decomposition transitioning layer,slag layer,slag formation transitioning layer,matte formation transitioning layer,weakoxidizing layer and strong oxidizing layer.The furnace along the length direction is divided into three functional regions,that is,reaction region,separation transitioning region and liquid phase separation and settling region.These layers or regions play differentroles in the model in describing the mechanism of the smelting process.The SKS smelting is at a multiphase non-steady equilibriumstate,and the oxygen and sulfur potentials change gradually in the length and cross directions.The smelting capacity of the SKSprocess could be raised through reasonably controlling the potential values in different layers and regions.展开更多
A computational thermodynamics model for the oxygen bottom-blown copper smelting process(Shuikoushan,SKS process)was established,based on the SKS smelting characteristics and theory of Gibbs free energy minimization.T...A computational thermodynamics model for the oxygen bottom-blown copper smelting process(Shuikoushan,SKS process)was established,based on the SKS smelting characteristics and theory of Gibbs free energy minimization.The calculated results of the model show that,under the given stable production condition,the contents of Cu,Fe and S in matte are71.08%,7.15%and17.51%,and the contents of Fe,SiO2and Cu in slag are42.17%,25.05%and3.16%.The calculated fractional distributions of minor elements among gas,slag and matte phases are As82.69%,11.22%,6.09%,Sb16.57%,70.63%,12.80%,Bi68.93%,11.30%,19.77%,Pb19.70%,24.75%,55.55%and Zn17.94%,64.28%,17.79%,respectively.The calculated results of the multiphase equilibrium model agree well with the actual industrial production data,indicating that the credibility of the model is validated.Therefore,the model could be used to monitor and optimize the industrial operations of SKS process.展开更多
There are many bottom-blown smelting furnaces in metallurgical industry. When oxygen or air sprays from the jet nozzle into the bottom of the furnace, the melting phase will be frozen and a hemispherical porous zone w...There are many bottom-blown smelting furnaces in metallurgical industry. When oxygen or air sprays from the jet nozzle into the bottom of the furnace, the melting phase will be frozen and a hemispherical porous zone with a mushroom head shape will be formed around the nozzle. The mushroom head can pro- tect the jet nozzle and mitigate the liquid spray on the surface of melt. In order to analyze the formation process of a mushroom head in the bottom-blown smelting furnaces, a hydraulic experiment system was designed and the formation of the mushroom head was investigated by hydraulic experiment. The hydrau- lic experiment results show that the formation process is mainly divided into generating crushing genera- ting process and stable mushroom head generation process. The formation of stable mushroom head re- quires certain thermodynamic condition and water splash is more intense without a mushroom head than with a mushroom head. The size, porosity and diameter of the mushroom head are affected by the flow rate, temperature and heat capacity of the bottom-blowing gas and the temperature of the superheat and the physical parameters of the melt.展开更多
基金Project(51620105013)supported by the National Natural Science Foundation of China
文摘The SKS furnace is a horizontal cylindrical reactor similar to a Noranda furnace,however,the oxygen enriched air isblown into the furnace from the bottom.Mechanism model of the SKS process was developed by analyzing the smeltingcharacteristics deeply.In our model,the furnace section from top to bottom is divided into seven functional layers,i.e.,gas layer,mineral decomposition transitioning layer,slag layer,slag formation transitioning layer,matte formation transitioning layer,weakoxidizing layer and strong oxidizing layer.The furnace along the length direction is divided into three functional regions,that is,reaction region,separation transitioning region and liquid phase separation and settling region.These layers or regions play differentroles in the model in describing the mechanism of the smelting process.The SKS smelting is at a multiphase non-steady equilibriumstate,and the oxygen and sulfur potentials change gradually in the length and cross directions.The smelting capacity of the SKSprocess could be raised through reasonably controlling the potential values in different layers and regions.
基金Project(51620105013)supported by the National Natural Science Foundation of China
文摘A computational thermodynamics model for the oxygen bottom-blown copper smelting process(Shuikoushan,SKS process)was established,based on the SKS smelting characteristics and theory of Gibbs free energy minimization.The calculated results of the model show that,under the given stable production condition,the contents of Cu,Fe and S in matte are71.08%,7.15%and17.51%,and the contents of Fe,SiO2and Cu in slag are42.17%,25.05%and3.16%.The calculated fractional distributions of minor elements among gas,slag and matte phases are As82.69%,11.22%,6.09%,Sb16.57%,70.63%,12.80%,Bi68.93%,11.30%,19.77%,Pb19.70%,24.75%,55.55%and Zn17.94%,64.28%,17.79%,respectively.The calculated results of the multiphase equilibrium model agree well with the actual industrial production data,indicating that the credibility of the model is validated.Therefore,the model could be used to monitor and optimize the industrial operations of SKS process.
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-TP-15-022A3)
文摘There are many bottom-blown smelting furnaces in metallurgical industry. When oxygen or air sprays from the jet nozzle into the bottom of the furnace, the melting phase will be frozen and a hemispherical porous zone with a mushroom head shape will be formed around the nozzle. The mushroom head can pro- tect the jet nozzle and mitigate the liquid spray on the surface of melt. In order to analyze the formation process of a mushroom head in the bottom-blown smelting furnaces, a hydraulic experiment system was designed and the formation of the mushroom head was investigated by hydraulic experiment. The hydrau- lic experiment results show that the formation process is mainly divided into generating crushing genera- ting process and stable mushroom head generation process. The formation of stable mushroom head re- quires certain thermodynamic condition and water splash is more intense without a mushroom head than with a mushroom head. The size, porosity and diameter of the mushroom head are affected by the flow rate, temperature and heat capacity of the bottom-blowing gas and the temperature of the superheat and the physical parameters of the melt.
基金Projects(U20A20273,51904351)supported by the National Natural Science Foundation of ChinaProject(2022JJ10078)supported by Hunan Provincial Natural Science Foundation of China+1 种基金Project(2021RC3005)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2020CX028)supported by the Innovation Driven Program of Central South University,China。