Boulders and cobbles are often used in stream restoration projects to increase flow resistance and enhance channel stability and habitat diversity. Particle size metrics determined from the particle distribution are o...Boulders and cobbles are often used in stream restoration projects to increase flow resistance and enhance channel stability and habitat diversity. Particle size metrics determined from the particle distribution are often used as a proxy for shear stress in field equations. Clustering of large particles has been thought to contribute to shear stress, but the effect of clustering is not accounted for in equations that use a representative particle size, such as the <em>D</em><sub>84</sub>. In this paper, clustering is defined using the upper tail (≥84%) in a variable called Topsum. The number of clusters, average size of clusters, and shear stress are evaluated using the proposed definition of cluster. Findings suggest that the upper tail represents the roughness height better than the commonly used proxy of <em>D</em><sub>84</sub> for boulder bed streams (streams which have a D84 particle 0.05 - 0.15 meters).展开更多
Detailed sedimentological analysis of the Pokaran Boulder Bed,representing the most basal unit of the Neoproterozoic-Lower Cambrian Marwar Supergroup,clearly indicates its glacial origin.The glacial sediments are inte...Detailed sedimentological analysis of the Pokaran Boulder Bed,representing the most basal unit of the Neoproterozoic-Lower Cambrian Marwar Supergroup,clearly indicates its glacial origin.The glacial sediments are interpreted as an ice-contact submarine fan deposit.Based on the detrital and inherited zircon population of the Marwar Supergroup sediments and interlayered pyroclastic deposits,a Marinoan cryochron of the Cryogenian Period is envisaged for the Pokaran Boulder Bed.The well-preserved Ediacaran elements in the post-glacial sedimentary succession also support a Cryogenian to Early Cambrian age of the Marwar Supergroup.The glacial deposition at the base of the Marwar Supergroup strengthens the regional correlation between the studied sediments with the Lesser Himalayan Blaini-Krol-Tal sediments and the Haqf Supergroup of Oman.The available zircon ages and paleomagnetic data of the Malani Igneous suite,along with the Marinoan glacial deposits,detrital zircon ages,and Ediacaran fossil elements of the Marwar Supergroup add significant information to the Neoproterozoic Earth history.展开更多
文摘Boulders and cobbles are often used in stream restoration projects to increase flow resistance and enhance channel stability and habitat diversity. Particle size metrics determined from the particle distribution are often used as a proxy for shear stress in field equations. Clustering of large particles has been thought to contribute to shear stress, but the effect of clustering is not accounted for in equations that use a representative particle size, such as the <em>D</em><sub>84</sub>. In this paper, clustering is defined using the upper tail (≥84%) in a variable called Topsum. The number of clusters, average size of clusters, and shear stress are evaluated using the proposed definition of cluster. Findings suggest that the upper tail represents the roughness height better than the commonly used proxy of <em>D</em><sub>84</sub> for boulder bed streams (streams which have a D84 particle 0.05 - 0.15 meters).
文摘Detailed sedimentological analysis of the Pokaran Boulder Bed,representing the most basal unit of the Neoproterozoic-Lower Cambrian Marwar Supergroup,clearly indicates its glacial origin.The glacial sediments are interpreted as an ice-contact submarine fan deposit.Based on the detrital and inherited zircon population of the Marwar Supergroup sediments and interlayered pyroclastic deposits,a Marinoan cryochron of the Cryogenian Period is envisaged for the Pokaran Boulder Bed.The well-preserved Ediacaran elements in the post-glacial sedimentary succession also support a Cryogenian to Early Cambrian age of the Marwar Supergroup.The glacial deposition at the base of the Marwar Supergroup strengthens the regional correlation between the studied sediments with the Lesser Himalayan Blaini-Krol-Tal sediments and the Haqf Supergroup of Oman.The available zircon ages and paleomagnetic data of the Malani Igneous suite,along with the Marinoan glacial deposits,detrital zircon ages,and Ediacaran fossil elements of the Marwar Supergroup add significant information to the Neoproterozoic Earth history.